# Step-up PWM DC/DC Converter

# **GENERAL DESCRIPTION**

The AX5204 is high efficient step-up DC/DC converter. Large output current is possible having a built in internal N channel MOSFET, and using an external coil and diode.

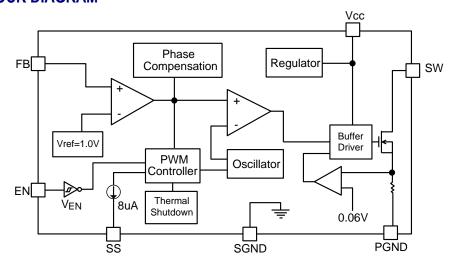
The AX5204 can be operated at switching frequencies of 500 kHz allowing for easy filtering and low noise, the size of the external components can be reduced.

Output voltage is programmable with 1.0V of standard voltage supply internal, and using externally connected components, output voltage (FB) can be set up at will. The soft-start time can be programmed by outside capacitor; the function prevents overshoot at startup. Build inside Current limit, Thermal Shutdown and enable functions.

#### ❖ FEATURES

Input voltage: 3V to 20V

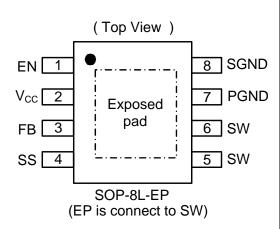
Output voltage: 3.3V to 32V


Duty ratio: 0% to 85% PWM control

Oscillation frequency: 500KHz.

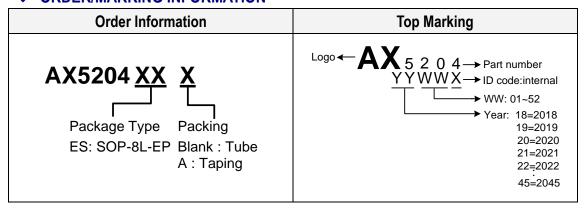
Enable and Thermal Shutdown function.

- Internal Current limit.
- **Built-in N-channel MOSFET**
- SOP-8L with Exposed pad Pb-Free package.
- RoHS and Halogen free compliance.


### **BLOCK DIAGRAM**






#### **❖ PIN ASSIGNMET**

The package of AX5204 is SOP-8L-EP; the pin assignment is given by:



| Name | Description                                                             |  |  |  |  |  |
|------|-------------------------------------------------------------------------|--|--|--|--|--|
| SGND | Signal Ground pin.                                                      |  |  |  |  |  |
| PGND | Power Ground pin                                                        |  |  |  |  |  |
| EN   | Power-off pin H: normal operation(Step-up) L: Step-up operation stopped |  |  |  |  |  |
| Vcc  | IC power supply pin                                                     |  |  |  |  |  |
| FB   | Feedback pin                                                            |  |  |  |  |  |
| SW   | Switch pin. Connect external inductor & diode here.                     |  |  |  |  |  |
| SS   | Soft-Start Pin.                                                         |  |  |  |  |  |

#### ❖ ORDER/MARKING INFORMATION

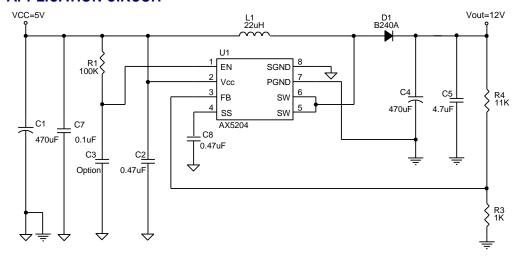


# **❖ ABSOLUTE MAXIMUM RATINGS** (at T<sub>A</sub>=25°C)

| Characteristics                             | Symbol               | Rating                       | Unit |
|---------------------------------------------|----------------------|------------------------------|------|
| VCC Pin Voltage                             | V <sub>CC</sub>      | GND - 0.3 to GND + 22        | V    |
| Feedback Pin Voltage                        | $V_{FB}$             | GND - 0.3 to 6               | V    |
| ON/OFF Pin Voltage                          | $V_{EN}$             | GND - 0.3 to $V_{\text{CC}}$ | V    |
| Switch Pin Voltage                          | $V_{\text{SW}}$      | GND - 0.3 to 34              | V    |
| SS Pin Voltage                              | $V_{SS}$             | GND - 0.3 to 6               | V    |
| Power Dissipation                           | PD                   | Internally limited           | mW   |
| Storage Temperature Range                   | T <sub>ST</sub>      | -40 to +150                  | °C   |
| Operating Junction Temperature              | T <sub>OPJ</sub>     | -20 to +125                  | °C   |
| Thermal Resistance from Junction to case    | $\theta_{\text{JC}}$ | 15                           | °C/W |
| Thermal Resistance from Junction to ambient | θја                  | 40                           | °C/W |

Note:  $\theta_{JA}$  is measured with the PCB copper area (connect to exposed pad) of approximately 1 in<sup>2</sup>(Multi-layer).




# **❖ ELECTRICAL CHARACTERISTICS**

(V<sub>CC</sub> = 5V, V<sub>OUT</sub>=12V, T<sub>A</sub>=25°C, unless otherwise specified)

| Characteristics                   | Symbol              | Conditions                                   |                         | Min  | Тур  | Max  | Units |
|-----------------------------------|---------------------|----------------------------------------------|-------------------------|------|------|------|-------|
| Operating Supply Voltage          | Vcc                 |                                              |                         | 3    | -    | 20   | V     |
| Output Voltage Range              | V <sub>OUT</sub>    |                                              |                         | 3.3  | -    | 28   | V     |
| Feedback Voltage                  | V <sub>FB</sub>     | I <sub>OUT</sub> =0.1A                       |                         | 0.98 | 1.00 | 1.02 | V     |
| Feedback Bias Current             | I <sub>FB</sub>     | I <sub>OUT</sub> =0.1A                       |                         | -    | 0.1  | 0.5  | uA    |
| Quiescent Current                 | Iccq                | V <sub>FB</sub> =1.5V force                  | e driver off            | -    | 4    | 6    | mΑ    |
| Shutdown Supply Current           | I <sub>SD</sub>     | V <sub>EN</sub> =0V                          |                         | -    | 1    | 10   | uA    |
| Oscillation Frequency             | Fosc                | SW pin                                       |                         | 400  | 500  | 600  | KHz   |
| Line Regulation                   |                     | V <sub>CC</sub> =3~0.8*V <sub>C</sub>        | DUT                     | -    | 1    | 1    | %     |
| Load Regulation                   |                     | I <sub>OUT</sub> =50m~0.6/                   | 4                       | -    | 0.5  | -    | %     |
| EN Pin Logic input threshold      | V <sub>SH</sub>     | High (regulator ON)                          |                         | 2.0  | -    | -    | M     |
| voltage                           | V <sub>SL</sub>     | Low (regulator OFF)                          |                         | -    | -    | 8.0  | V     |
| ENI Dia lauret Oromant            | I <sub>SH</sub>     | V <sub>EN</sub> =2.5V (ON)                   |                         | -    | 20   | -    | uA    |
| EN Pin Input Current              | I <sub>SL</sub>     | V <sub>EN</sub> =0.3V (OFF)                  |                         | -    | -1   | -    | uA    |
| SS pin Current                    | Iss                 |                                              |                         | -    | 8    | -    | uA    |
| Switching Current Limit           | I <sub>LIM-SW</sub> |                                              |                         | 1.8  | 2.0  | -    | Α     |
| Internal MOCEET D                 | Б                   | V <sub>CC</sub> =5V                          |                         | -    | 40   | 80   | C     |
| Internal MOSFET R <sub>DSON</sub> | RDSON               | V <sub>CC</sub> =12V                         |                         | -    | 30   | 60   | mΩ    |
| Efficiency                        | EFFI                | V <sub>CC</sub> =5V<br>V <sub>ОUT</sub> =12V | I <sub>OUT</sub> = 0.8A | -    | 91   | -    | %     |
| Maximum Duty Cycle                | DC <sub>MAX</sub>   | V <sub>FB</sub> =0V                          |                         | -    | 85   | -    | 0/    |
| Minimum Duty Cycle                | DC <sub>MIN</sub>   | V <sub>FB</sub> =1.5V                        |                         | -    | 0    | -    | %     |
| Thermal shutdown Temp             | T <sub>SD</sub>     |                                              |                         | -    | 145  | -    | ပ္    |



#### APPLICATION CIRCUIT



$$V_{OUT} = V_{FB} \times (1 + \frac{R4}{R3}), V_{FB} = 1.0V, R3 = 1K \sim 3K$$

# **\* FUNCTION DESCRIPTIONS**

#### **PWM Control**

The AX5204 consists of DC/DC converters that employ a pulse-width modulation (PWM) system. In converters of the AX5204, the pulse width varies in a range from 0 to 85%, according to the load current. The ripple voltage produced by the switching can easily be removed through a filter because the switching frequency remains constant. Therefore, these converters provide a low-ripple power over broad ranges of input voltage and load current.

#### **Setting the Output Voltage**

Application circuit item shows the basic application circuit with AX5204 adjustable output version. The external resistor sets the output voltage according to the following equation:

$$V_{out} = 1.0V \times \left(1 + \frac{R4}{R3}\right)$$



Table 1 Resistor select for output voltage setting

| V <sub>OUT</sub> | R3   | R4  |
|------------------|------|-----|
| 12V              | 1K   | 11K |
| 15V              | 1.3K | 18K |
| 18V              | 1.3K | 22K |
| 24V              | 1.3K | 30K |
| 32V              | 2.2K | 68K |

#### **Inductor Selection**

For most designs, Low inductance values are physically smaller but require faster switching, which results in some efficiency loss. The inductor value can be derived from the following equation:

$$L = \frac{V_{IN} \times (V_{OUT} - V_{IN})}{V_{OUT} \times \Delta I_{L} \times f_{IX}}$$

Where is inductor Ripple Current. Large value inductors lower ripple current and small value inductors result in high ripple currents. Choose inductor ripple current approximately 15% of the maximum input current 1.6A, ∆I<sub>L</sub>=0.24A.

Table 2 Inductor select for output voltage setting (V<sub>CC</sub>=5V)

| Vout     | 9V   | 12V  | 15V  | 18V  |
|----------|------|------|------|------|
| L1 Value | 18uH | 22uH | 25uH | 33uH |

The DC current rating of the inductor should be at least equal to the maximum load current plus half the ripple current to prevent core saturation (1.6A+0.12A).

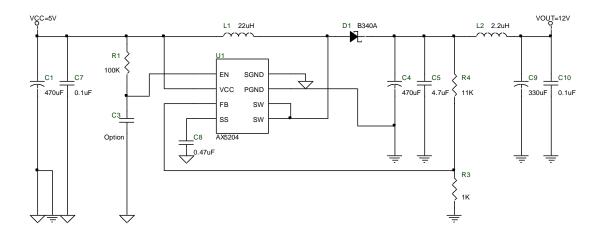
#### **Input Capacitor Selection**

The input capacitor reduces the surge current drawn from the input and switching noise from the device. The input capacitor impedance at the switching frequency shall be less than input source impedance to prevent high frequency switching current passing to the input. A low ESR input capacitor sized for maximum RMS current must be used.

The capacitor voltage rating should be at least 1.5 times greater than the input voltage, and often much higher voltage ratings are needed to satisfy.



#### **Output Capacitor Selection**

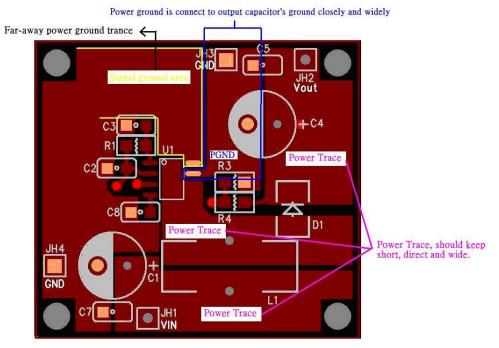

The output capacitor is required to keep the output voltage ripple small and to ensure regulation loop stability. The output capacitor must have low impedance at the switching frequency. A low ESR capacitor sized for maximum RMS current must be used. The low ESR requirements needed for low output ripple voltage.

The capacitor voltage rating should be at least 1.5 times greater than the input voltage, and often much higher voltage ratings are needed to satisfy.

# **Output Voltage Ripple**

Application circuit item shows the basic application circuit with AX5203. The output voltage ripple (V<sub>RIPPLE</sub>) very lager at high switch current(I<sub>SW</sub>=3A, V<sub>RIPPLE</sub> = 0.7V), external  $\pi$  filters can reduce output voltage ripple.

#### $\pi$ filters

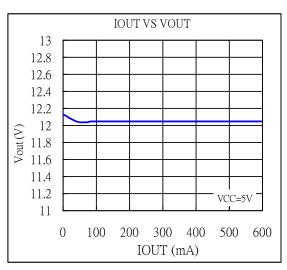


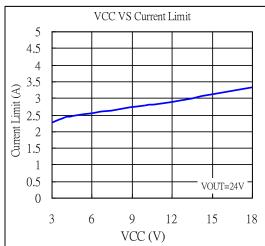


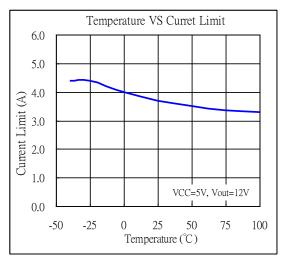

# Layout Guidance (please refer layout picture)

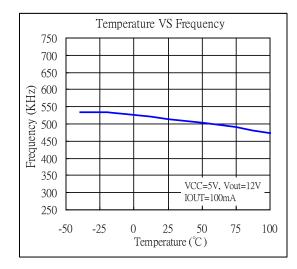
When laying out the PC board, the following suggestions should be taken to ensure proper operation of the AX5204. These items are also illustrated graphically in below.

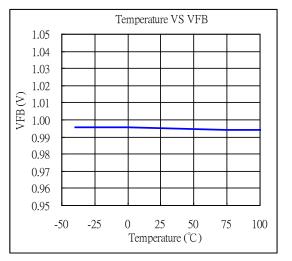

- 1. The power traces, including the Source trace, the Schottky and the C1 trace should be kept short, direct and wide to allow large current flow.
- 2. The power ground is keep C4's ground closed and far away signal ground.
- 3. The signal ground trance is distant from power ground trance.
- 4. The exposed pad is connecting to SW trace closely and widely. (Reduce IC temperature)
- 5. Do not trace signal line under inductor.





(AX5204 PCB Layout -Top View)



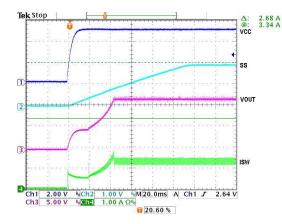


# **❖ TYPICAL CHARACTERISTICS**

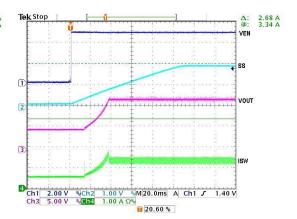






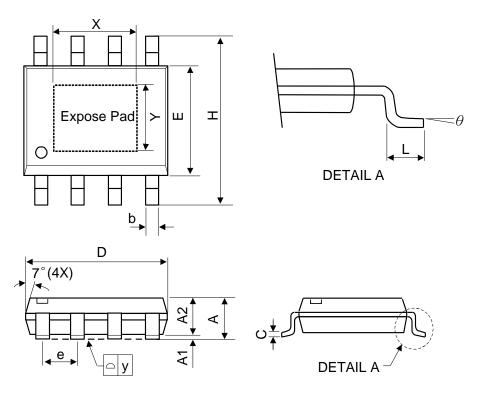



# **❖ TYPICAL CHARACTERISTICS (CONTINUOUS)**

Power-ON Wave (V<sub>CC</sub>=5V, V<sub>OUT</sub>=12V, Load=0.6A, SS=0.47uF) (V<sub>CC</sub>=5V, V<sub>OUT</sub>=12V, Load=0.6A, SS=0.47uF)


**Enable-ON Wave** 



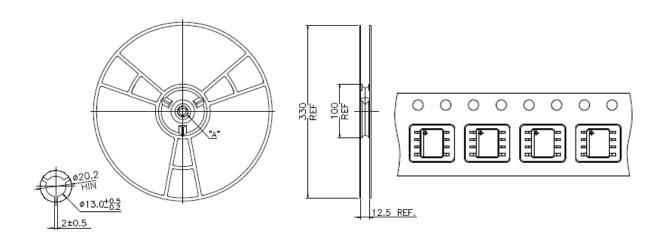


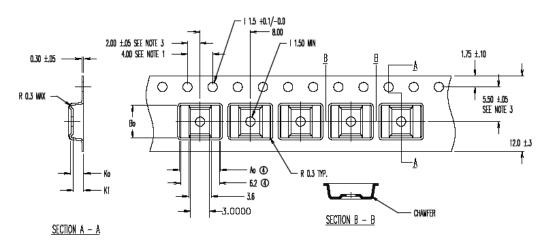


# **❖ PACKAGE OUTLINES**



| Symbol | Dimensions in Millimeters |      |      | Dimensions in Inches |           |       |  |
|--------|---------------------------|------|------|----------------------|-----------|-------|--|
|        | Min.                      | Nom. | Max. | Min.                 | Nom.      | Max.  |  |
| Α      | -                         | -    | 1.75 | -                    | -         | 0.069 |  |
| A1     | 0                         | -    | 0.15 | 0                    | -         | 0.06  |  |
| A2     | 1.25                      | -    | -    | 0.049                | -         | -     |  |
| С      | 0.1                       | 0.2  | 0.25 | 0.0075               | 0.008     | 0.01  |  |
| D      | 4.7                       | 4.9  | 5.1  | 0.185                | 0.193     | 0.2   |  |
| Е      | 3.7                       | 3.9  | 4.1  | 0.146                | 0.154     | 0.161 |  |
| Н      | 5.8                       | 6    | 6.2  | 0.228                | 0.236     | 0.244 |  |
| L      | 0.4                       | -    | 1.27 | 0.015                | -         | 0.05  |  |
| b      | 0.31                      | 0.41 | 0.51 | 0.012                | 0.016     | 0.02  |  |
| е      | 1.27 BSC                  |      |      |                      | 0.050 BSC |       |  |
| у      | -                         | -    | 0.1  | -                    | -         | 0.004 |  |
| Х      | -                         | 2.34 | -    | -                    | 0.092     | =     |  |
| Y      | -                         | 2.34 | -    | -                    | 0.092     | -     |  |
| θ      | 00                        | -    | 80   | 00                   | -         | 80    |  |


Mold flash shall not exceed 0.25mm per side


JEDEC outline: MS-012 BA



# ❖ Carrier tape dimension

# ESOP8L





⊕ ⊕ № = 6.50 Bo = 5.20 Ka = 2.10 K1 = 1.70

- 1. 10 sprocket hole pitch cumulative tolerance  $\pm$  0.2mm
- 2. Camber not to exceed 1mm in 100mm.
- 3. Material: Anti-Static Black Advantek Polystyrene.
- Material: Anti-Static black Advanted Polystyrene.
   Ao and Bo measured on a plane 0.3mm above the bottom of the pocket.
   Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier.
   Pocket position relative to sprocket hole measured as true position of pocket, not pocket hole.

11/11