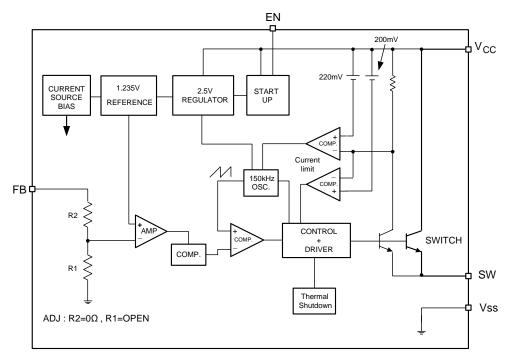
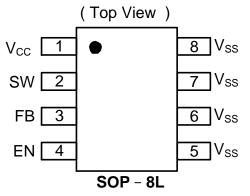
150KHz, 2A PWM Buck DC/DC Converter

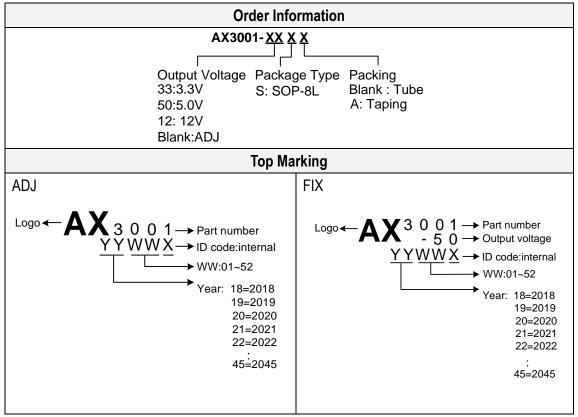

✤ GENERAL DESCRIPTION

The AX3001 series are monolithic IC designed for a step-down DC/DC converter, and own the ability of driving a 2A load without additional transistor. It saves board space. The external shutdown function can be controlled by logic level and then come into standby mode. The internal compensation makes feedback control having good line and load regulation without external design. Regarding protected function, thermal shutdown is to prevent over temperature operating from damage, and current limit is against over current operating of the output switch. If current limit function occurs and V_{FB} is down below 0.5V, the switching frequency will be reduced. The AX3001 series operates at a switching frequency of 150KHz thus allow smaller sized filter components than what would be needed with lower frequency switching regulators. The output version included fixed 3.3V, 5V, 12V, and an adjustable type. The chips are available in a standard 8-lead SOP package.

✤ FEATURES


- Output voltage: 3.3V, 5V, 12V and adjustable output version.
- Adjustable version output voltage range, 1.23V to 19.5V.
- 150KHz fixed switching frequency.
- Voltage mode non-synchronous PWM control.
- Thermal-shutdown and current-limit protection.
- ON/OFF shutdown control input.
- Short Circuit Protect (SCP).
- Operating voltage can be up to 22V.
- Output load current: 2A.
- SOP-8L Pb-Free packages.
- Low power standby mode.
- Built-in switching transistor on chip.
- RoHS and Halogen free compliance

BLOCK DIAGRAM


✤ PIN ASSIGNMENT

The package of AX3001 is SOP-8L; the pin assignment is given by:

Name	Description			
Vcc	Operating voltage input			
SW	Switching output			
FB	Output voltage feedback control			
EN	ON/OFF Shutdown			
Vss	GND pin			

✤ ORDER/MARKING INFORMATION

✤ ABSOLUTE MAXIMUM RATINGS

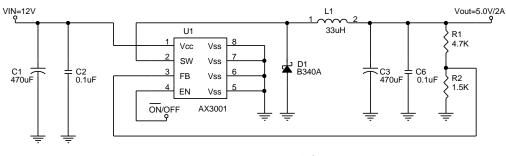
Characteristics	Symbol	Rating	Unit
Maximum Supply Voltage	Vcc	+24	V
ON/OFF Pin Input Voltage	V_{EN}	-0.3 to V_{CC}	V
Feedback Pin Voltage	V _{FB}	-0.3 to 16	V
Output Voltage to Ground	Vout	-0.8	V
Power Dissipation Internally limited		(T _J -T _A) / θ _{JA}	W
Storage Temperature Range		-65 to +150	°C
Operating Temperature Range	T _{OP}	-20 to +125	°C
Operating Supply Voltage	V _{OP}	+4.5 to +22	V
Thermal Resistance from Junction to case	θ」	20	°C/W
Thermal Resistance from Junction to ambient	θ_{JA}	60	°C/W

Note: θ_{JA} is measured with the PCB copper area(need connect to V_{SS} pins) of approximately 1.5 in² (Multi-layer).

AX3001 空瑟萊特科技股份有限公司 AXElite Technology Co.,Ltd

✤ ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, $T_A=25^{\circ}C$, $V_{CC}=12V$ for 3.3V, 5V, adjustable version and $V_{CC}=18V$ for the 12V version. $I_{LOAD} = 0.2A$)

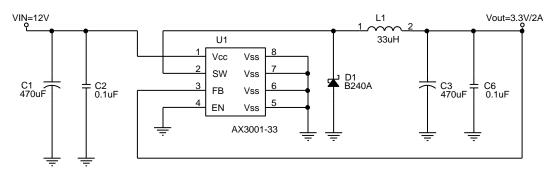

Characteristics		Symbol	Conditions	Min	Тур	Max	Units
Quiescent Current		lq	V _{FB} =12V force driver off		4	8	mA
Feedback bias	s current	I _{FB}	V _{FB} =1.3V (Adjustable version only)		-10	-50	nA
Shutdown sup	ply Current	I _{SD}	EN pin=5V V _{CC} =22V		35	100	uA
Oscillator frequencies	uency	Fosc		127	150	173	KHz
	uency of short circuit	F _{SCP}	(Adjustable) When V _{FB} <0.5V		50		KHz
protect			(Fixed)When < V _{OUT} *40%		50		KHz
Max. Duty Cyc	cle (ON)	DC	V _{FB} =0V force driver on	100 0			%
Min. Duty Cyc	le (OFF)	DC	V _{FB} =12V force driver off				
Current limit		ICL	Pear current, No outside circuit V _{FB} =0V force driver on	2.4			A
Saturation volt	Saturation voltage		I _{OUT} =2A, No outside circuit V _{FB} =0V force driver on		1.2	1.4	V
SW pin=0V	· Ov pin loukugo		No outside circuit V _{FB} =12V force driver off			-200	uA
SW pin=-0.8V	current	Iswl	V _{CC} =22V force driver off		-5		mA
EN pin logic input threshold voltage		VIL	Low (regulator ON)	-	1.3	0.6	V
		VIH	High (regulator OFF)	2.0	1.5	-	v
EN pin logic input current		Ι _Η	V _{EN} =2.5V (OFF)		-0.1	-0.5	
EN pin input current		١L	V _{EN} =0.5V (ON)			-1	uA
Thermal shutd	Thermal shutdown Temp				135		°C

*	ELECTRICAL	CHARACTERISTICS	(CONTINUED)
---	------------	-----------------	-------------

Version	Characteristics	Symbol	Conditions	Min	Тур	Max	Units
AX3001-ADJ	Output Feedback voltage	V _{FB}	I _{LOAD} =0.2A V _{OUT} programmed for 3.3V	1.193	1.23	1.267	V
	Efficiency	η	$V_{CC} = 12V, I_{LOAD} = 2A$		79		%
AX3001-3.3V	Output voltage	V _{OUT}	I _{LOAD} =0.2A	3.20	3.30	3.40	V
	Efficiency	η	V_{CC} = 12V, I_{LOAD} =2A		80		%
AX3001-5.0V	Output voltage	V _{OUT}	I _{LOAD} =0.2A	4.85	5.00	5.15	V
	Efficiency	η	V _{CC} = 12V, I _{LOAD} =2A		84		%
AX3001-12V	Output voltage	Vout	I _{LOAD} =0.2A	11.64	12.0	12.36	V
	Efficiency	η	V _{CC} = 15V, I _{LOAD} = 2A		90		%

✤ APPLICATION CIRCUIT

(1) Adjustable Output Voltage Version



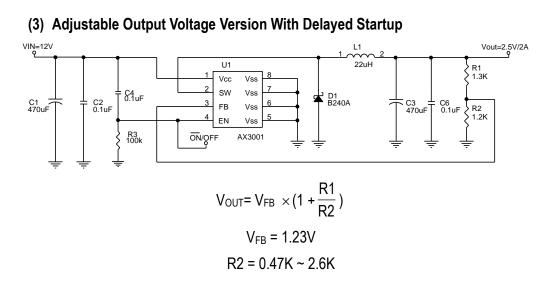
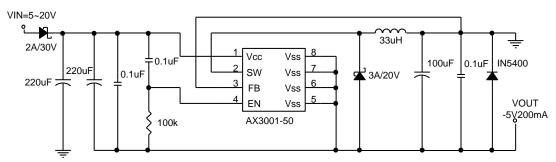

$$V_{OUT} = V_{FB} \times (1 + \frac{R1}{R2})$$

Table 1	Resistor	select for	or output	voltage	setting


V _{OUT}	R2	R1
5V	1.5K	4.7K
50	1.8K	5.6K
3.3V	1.5K	2.5K
3.3V	1.8K	3.0K
2.5V	1.8K	1.8K
1.8V	1.8K	0.82K

(2) Fixed Output Voltage Version

(4) Inverting -5V Regulator with Delayed Startup

6/12

✤ FUNCTION DESCRIPTIONS

Pin Functions

Vcc

This is the positive input supply for the IC switching regulator. A suitable input bypass capacitor must be presented at this pin to minimize voltage transients and to supply the switching currents needed by the regulator.

Vss

Circuit ground.

SW

Internal switch. The voltage at this pin switches between $(+V_{CC} - V_{SAT})$ and approximately – 0.5V, with a duty cycle of approximately V_{OUT} / V_{CC} . To minimize coupling to sensitive circuitry, the PC board copper area connected to this pin should be minimized.

Feedback

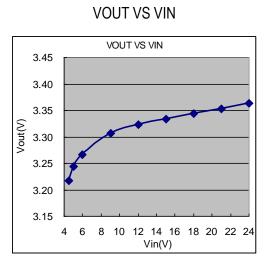
Senses the regulated output voltage to complete the feedback loop.

EN

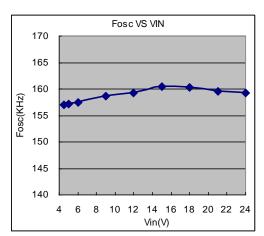
Allows the switching regulator circuit to be shutdown using logic level signals thus dropping the total input supply current to approximately 100uA. Pulling this pin below a threshold voltage of approximately 1.3V turns the regulator on, and pulling this pin above 1.3V (up to a maximum of V_{CC}) shuts the regulator down. If this shutdown feature is not needed, the EN pin can be wired to the ground pin.

Thermal Considerations

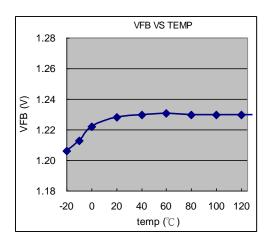
The SOP-8 package needs a heat sink under most conditions. The size of the heat sink depends on the input voltage, the output voltage, the load current and the ambient temperature. The AX3001 junction temperature rises above ambient temperature for a 2A load and different input and output voltages.

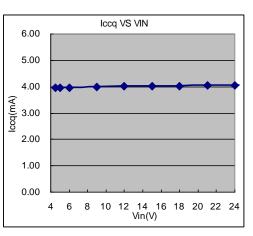

The data for these curves was taken with the AX3001 (SOP-8 package) operating as a buck-switching regulator in an ambient temperature of 25°C (still air). These temperature increments are all approximate and are affected by many factors. Higher ambient temperatures requires more heat sinker.

For the best thermal performance, wide copper traces and generous amounts of printed circuit board copper (need connect to the V_{SS} pins) should be used in the board layout, (One exception is the SW(switch) pin, which should not have large areas of copper.) Large areas of copper provide the best transfer of heat (lower thermal resistance) to the surrounding air, and moving air lowers the thermal resistance even further.

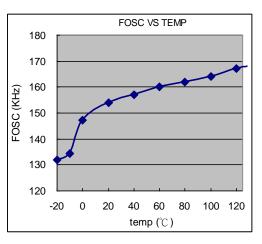

Package thermal resistance and junction temperature increments are all approximate. The increments are affected by a lot of factors. Some of these factors include board size, shape, thickness, position, location, and even board temperature. Other factors are, trace width, total printed circuit copper area, copper thickness, single or double-sided, multi-layer board and the amount of solder on the board.

The effectiveness of the PC board to dissipate heat also depends on the size, quantity and spacing of other components on the board, as well as whether the surrounding air is still or moving. Furthermore, some of these components such as the catch diode will add heat to the PC board and the heat can vary as the input voltage changes. For the inductor, depending on the physical size, type of core material and the DC resistance, it could either act as a heat sink taking heat away from the board, or it could add heat to the board.

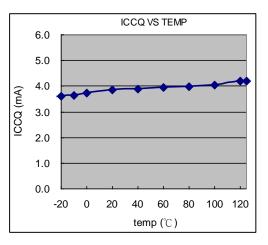

✤ TYPICAL CHARACTERISTICS



FOSC VS VIN

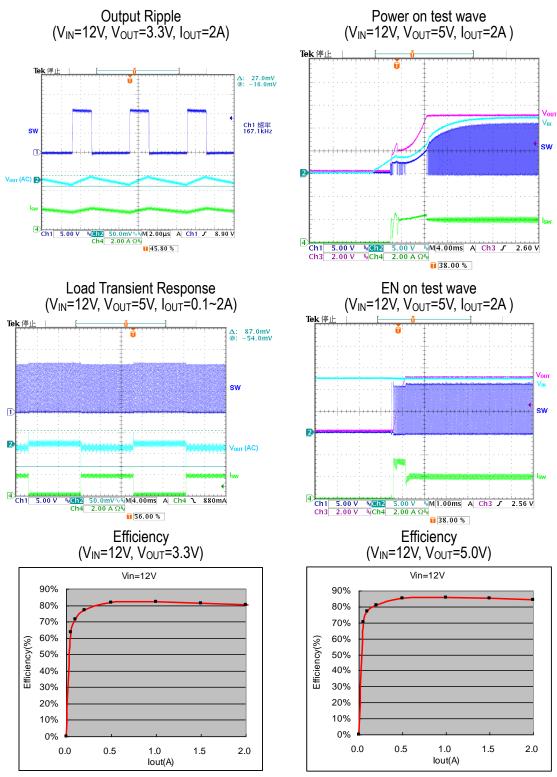


VFB VS TEMPERATURE



FOSC VS TEMPERATURE

ICCQ VS TEMPERATURE



ICCQ VS VIN

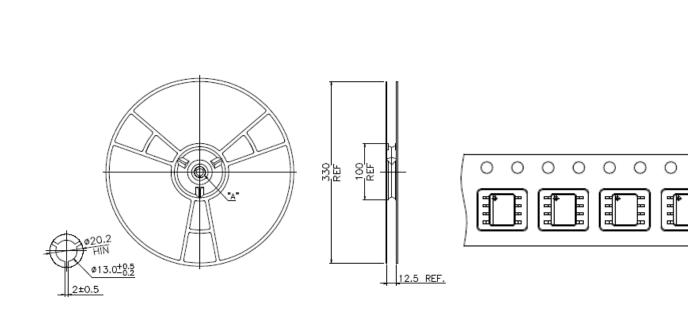
9/12

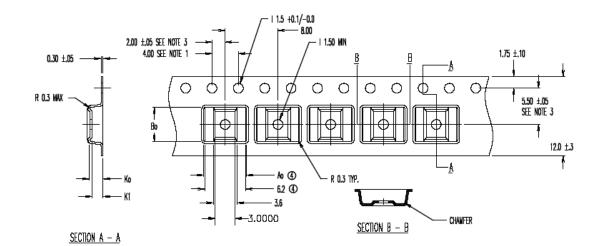

AX3001 空瑟萊特科技股份有限公司 AXElite Technology Co.,Ltd

✤ TYPICAL CHARACTERISTICS

10/12

✤ PACKAGE OUTLINES


Symbol	Dimensions in Millimeters			Dimensions in Inches			
	Min.	Nom.	Max.	Min.	Nom.	Max.	
A	-	-	1.75	-	-	0.069	
A1	0.1	-	0.25	0.04	-	0.1	
A2	1.25	-	-	0.049	-	-	
С	0.1	0.2	0.25	0.0075	0.008	0.01	
D	4.7	4.9	5.1	0.185	0.193	0.2	
E	3.7	3.9	4.1	0.146	0.154	0.161	
Н	5.8	6	6.2	0.228	0.236	0.244	
L	0.4	-	1.27	0.015	-	0.05	
b	0.31	0.41	0.51	0.012	0.016	0.02	
е	1.27 BSC			(0.050 BSC		
у	-	-	0.1	-	-	0.004	
θ	0 0	_	80	0 0	-	8 0	


Mold flash shall not exceed 0.25mm per side JEDEC outline: MS-012 AA

AX3001 AX300 axelite <u>亞瑟萊特科技股份有限公司</u> AXElite Technology Co.,Ltc

SOP8L

Carrier tape dimension

Notes:

- 1. 10 sprocket hole pitch cumulative tolerance ± 0.2mm
- 2. Camber not to exceed 1mm in 100mm.
- 3. Material: Anti-Static Black Advantek Polystyrene.
- Ao and Bo measured on a plane 0.3mm above the bottom of the pocket.
 Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier.
- 6. Pocket position relative to sprocket hole measured as true position of pocket, not pocket hole.

12/12

0