

PWM Control 3A Step-Down Converter

❖ GENERAL DESCRIPTION

AX3163/A consists of step-down switching regulator with PWM control. These devise include a reference voltage source, oscillation circuit, error amplifier, internal PMOS and etc.

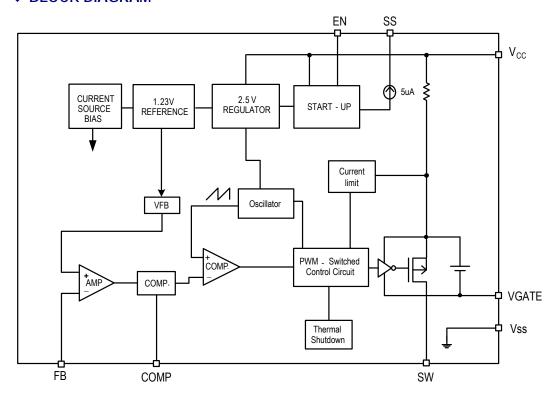
AX3163/A provides low-ripple power, high efficiency, and excellent transient characteristics. The PWM control circuit is able to the duty ratio linearly form 0 up to 100%. This converter is build out soft start function that prevents overshoot and inrush current at startup. An over current protect function and short circuit protect function are built inside, and when OCP or SCP happens, the operation frequency will be reduced. An external compensation is easily to system stable; the low ESR output capacitor can be used.

With the addition of an internal P-channel Power MOS, a coil, capacitors, and a diode connected externally, these ICs can function as step-down switching regulators. They serve as ideal power supply units for portable devices when coupled with the SOP-16L with exposed pad package, providing such outstanding features as low current consumption. Since this converter can accommodate an input voltage up to 58V, it is also suitable for the operation via an AC adapter.

FEATURES

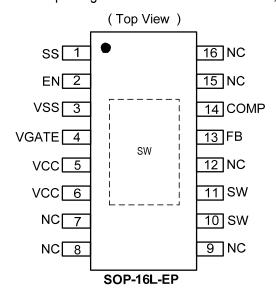
Input voltage : 10.8V to 58VOutput voltage : 3.3V to 56V

- Duty ratio: 0% to 100% PWM control

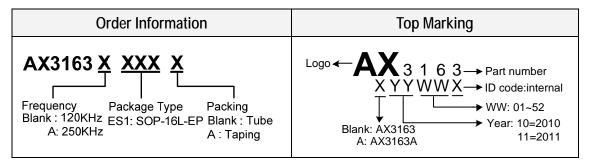

Enable and Soft-Start function

- Current Limit, Short Circuit Protect (SCP) and Thermal Shutdown protection

Built-in internal SW P-channel MOS.


SOP-16L-EP Pb-Free package.

PIN ASSIGNMENT


The package of AX3163/A is SOP-16L-EP; the pin assignment is given by:

Name	Description
SS	Soft-start pin
EN	ON/OFF Shutdown pin
VSS	GND pin
VGATE	Driver GATE clamping pin. The pin must connect a 1uF capacitor to VCC
VCC	IC power supply pin
SW	Switch pin. Connect external inductor and diode here.
FB	Feedback pin
COMP	Compensation pin
NC	No Connection

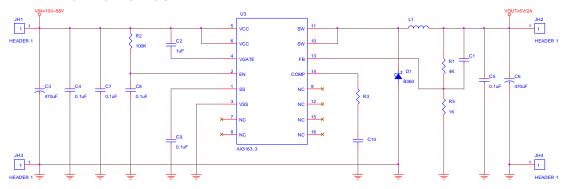
❖ ORDER/MARKING INFORMATION

❖ ABSOLUTE MAXIMUM RATINGS (at T_A=25°C)

Characteristics	Symbol	Rating	Unit
VCC Pin Voltage	Vcc	$V_{\rm SS}$ - 0.3 to $V_{\rm SS}$ + 63	V
Feedback Pin Voltage	V_{FB}	V _{SS} - 0.3 to 6	V
EN Pin Voltage	V _{EN/SS}	V _{SS} - 0.3 to 58	V
SS Pin Voltage	Vosc	V _{SS} - 0.3 to 6	V
COMP Pin Voltage	V_{COMP}	V _{SS} - 0.3 to 6	V
VGATE Pin Voltage	V _{GATE}	V_{SS} - 0.3 to V_{CC}	V
Switch Pin Voltage	V _{SW}	V_{SS} - 0.3 to V_{CC} + 0.3	V
Power Dissipation	PD	Internally limited	mW
Storage Temperature Range	T _{ST}	-65 to +150	°C
Operating Junction Temperature Range	T _{OJP}	-40 to +125	°C
Operating Supply Voltage	V _{OP}	10.8 to 58	V
Thermal Resistance from Junction to case	θјс	10	°C/W
Thermal Resistance from Junction to ambient	θЈΑ	45	°C/W

Note: θ_{JA} is measured with the PCB copper area (need connect to Exposed Pad) of approximately 1.5 in² (Multi-layer).

❖ ELECTRICAL CHARACTERISTICS


(V_{CC} = 24V, T_A =25°C, unless otherwise specified)

Characteristics	Symbol	Conditions	Min	Тур	Max	Units
Feedback Voltage	V_{FB}	I _{OUT} =10mA	0.98	1.00	1.02	V
Quiescent Current	I _{CCQ}	V _{FB} =1.2V force driver off	-	3	6	mA
Feedback Bias Current	I _{FB}	I _{OUT} =0.1A	-	0.1	0.5	uA
Shutdown Supply Current	I _{SD}	V _{EN} =0V	-	0.5	1	mA
Line Regulation	ΔV _{OUT} /V _{OUT}	V _{CC} =10.8V~58V, I _{ОUT} =10mA	-	0.3	0.6	%
Load Regulation	ΔV _{OUT} /V _{OUT}	$I_{OUT} = 0.2 \text{ to } 3A$	-	0.3	0.6	%
Current Limit	I _{CL}		3.5	-	-	Α
Oscillator fraguency	Fosc	AX3163	90	120	150	KHz
Oscillator frequency	Fosc	AX3163A	200	250	300	KHz
	F _{osc1}	AX3163 ICL	-	50	-	KHz
Short frequency	Fosc ₁	AX3163A ICL	-	110	-	KHz
	F _{OSC2}	AX3163/AX3163A V _{FB} < 0.3	-	30	-	KHz
EN Pin Logic input threshold	V _{SH}	High (regulator ON)	2.0	-	-	V
voltage	V_{SL}	Low (regulator OFF)	-	-	0.8	
EN Pin Input Current	I _{SH}	V _{EN} =2.5V (ON)	-	5	-	uA
EN FIII IIIput Guileiit	I _{SL}	V _{EN} =0.3V (OFF)	-	5	-	uA
SS Current	I _{SS}	V _{SS} =0V	-	10	-	uA
Internal MOSFET RDSON	R _{DSON}	V _{CC} =12V, 1A,V _{FB} =0V	-	90	150	mΩ
Efficiency (AX3163)	EFFI	$V_{CC} = 24V$, $V_{OUT} = 5V$, $I_{OUT} = 3A$	-	90	-	%

❖ APPLICATION CIRCUIT

VOUT = VFB x
$$(1 + \frac{R1}{R5})$$

VFB = 1.0V; R5 suggest 0.8K ~ 3K

EL Capacitor Compensation Table							
COUT ESR Range	FREQ	VOUT	R3	C10	C1	L1	
30m~80mΩ	100KHz	5V	1K	47nF	2200pF	68uH	
	250KHz		2.2K	47nF	560pF	33uH	
80m~300mΩ	100KHz		1K	47nF	2200pF	68uH	
	250KHz		2.2K	47nF	470pF	33uH	

❖ FUNCTION DESCRIPTIONS

EN

This pin can be supplied shutdown function. It is inside pull high function. Allow the switching regulator circuit to be shutdown pulling this pin below a 0.8V threshold voltage.

SS

This pin can be supplied soft start function. The pin must be connected a capacitor to ground. There is a 10uA current to charge this capacitor, vary the different capacitor value to control soft start time.

COMP

Compensation pin. For EL output capacitor application, the COMP pin connects R3 and C10 to ground for all condition; please refer the compensation table.

APPLICATION INFORMATION

Setting the Output Voltage

Application circuit item shows the basic application circuit with adjustable output version. The external resistor sets the output voltage according to the following equation:

$$V_{OUT} = 1.0V \times (1 + \frac{R1}{R5})$$

Table 1 Resistor select for output voltage setting

V_{OUT}	R5	R1
5V	1.5K	6K
3.3V	1.3K	3K

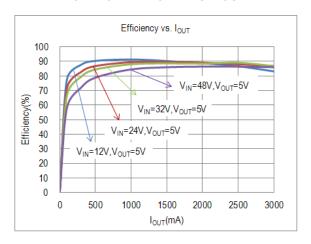
Inductor Selection

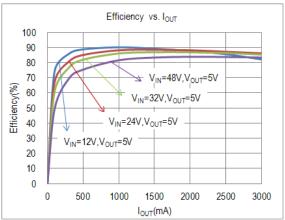
For most designs, the different frequency can be reducing the inductor value; The AX3163 is suggested 33 μ H. Where is inductor Ripple Current. Large value inductors lower ripple current and small value inductors result in high ripple currents. Choose inductor ripple current approximately 15% of the maximum load current 3A, ΔI_L =0.4A. The DC current rating of the inductor should be at least equal to the maximum load current plus half the ripple current to prevent core saturation (3A+0.2A).

Input Capacitor Selection

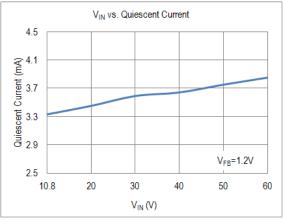
This capacitor should be located close to the IC using short leads and the voltage rating should be approximately 1.5 times the maximum input voltage. The RMS current rating requirement for the input capacitor of a buck regulator is approximately 1/2 the DC load current. A low ESR input capacitor sized for maximum RMS current must be used. A 470µF low ESR capacitor for most applications is sufficient.

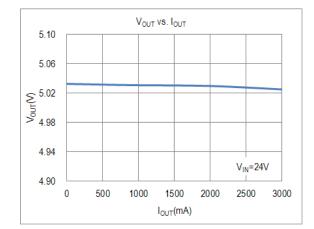
Output Capacitor Selection

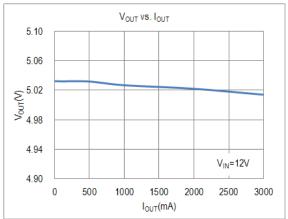

The output capacitor is required to filter the output and provide regulator loop stability. The important capacitor parameters are; the 100 KHz Equivalent Series Resistance (ESR), the RMS ripples current rating, voltage rating, and capacitance value. For the output capacitor, the ESR value is the most important parameter. The ESR can be calculated from the following formula.

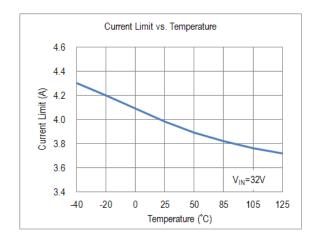

$$V_{RIPPLE} = \Delta I_L \times ESR = 0.4$$
A x 80m Ω = 32mV

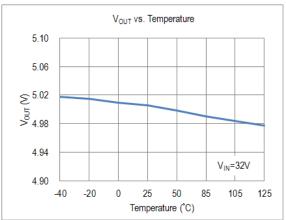

An aluminum electrolytic capacitor's ESR value is related to the capacitance and its voltage rating. In most case, higher voltage electrolytic capacitors have lower ESR values. Most of the time, capacitors with much higher voltage ratings may be needed to provide the low ESR values required for low output ripple voltage. It is recommended to replace this low ESR capacitor by using a $470\mu F$ low ESR values $< 80m\,\Omega$.

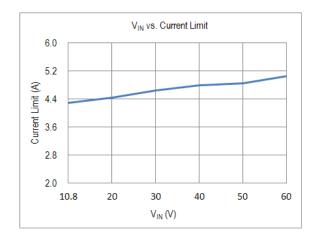



TYPICAL CHARACTERISTICS

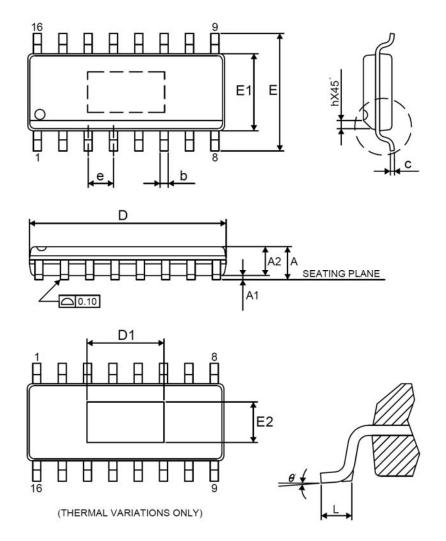








❖ TYPICAL CHARACTERISTICS (CONTINUOUS)



❖ PACKAGE OUTLINES

Symbol	Dimensions in Millimeters			Dimensions in Inches		
Syllibol	Min.	Nom.	Max.	Min.	Nom.	Max.
Α	-	-	1.70	-	-	0.067
A1	0.00	1	0.15	0.000	-	0.006
A2	1.25	ı	ı	0.049	1	-
С	0.10	-	0.25	0.004	-	0.010
D	9.90 BSC			0.390 BSC		
D1	MIN 1.50			MIN 0.059		
E1		3.90 BSC 0.154 BSC				
Е	6.00 BSC			0.236 BSC		
E2	MIN 1.00			MIN 0.039		
b	0.31	-	0.51	0.012	-	0.020
е	1.27 BSC				0.05 BSC	
Ĺ	0.40	-	1.27	0.016	-	0.050
h	0.25		0.50	0.010	-	0.020
θ	00	-	8 0	0 o	-	80

JEDEC outline: MO-012 BC

10/10