Step-up PWM DC/DC Converter

❖ GENERAL DESCRIPTION

The AX5104 is high efficient step-up DC/DC converter. Large output current is possible having a built in internal transistor, and using an external coil and diode. The converter can be operated at switching frequencies of 800KHz allowing for easy filtering and low noise, the size of the external components can be reduced. Output voltage is programmable with 1.0V of standard voltage supply internal, and using externally connected components, output voltage (FB) can be set up at will.

The AX5104 is external soft-start function that prevents inrush-current and overshooting at startup, soft-start time is be set up by outside capacitance. An enable function, current limit, over voltage protection (OVP) and thermal shutdown functions are built inside.

❖ FEATURES

- Input voltage: 4V to 23V

- Output voltage: 4.5V to 25V

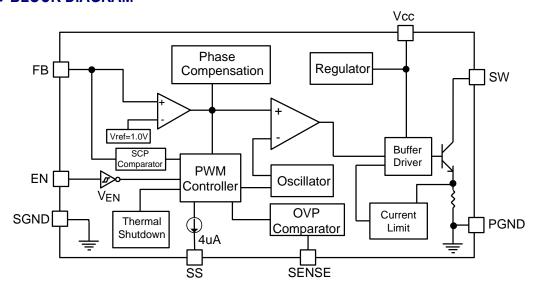
- Duty ratio: 0% to 83% PWM control

- Maximum switch current is 1.8A

- Oscillation frequency: 800 KHz (typ.)

- Current limit and thermal shutdown functions

- External soft-start function


- Over voltage protection (OVP)

- Built-in internal Transistor

- SOP-8L with Expose-Pad (EP) Pb-Free Package.

❖ BLOCK DIAGRAM

❖ PIN ASSIGNMENT

The package of AX5104 is SOP-8L-EP; the pin assignment is given by:

Name	Description						
SW	Switch pin. Connect external						
SVV	inductor & diode here.						
VCC	IC power supply pin						
	Power-off pin						
EN	H: normal operation(Step-up)						
	L: Step-up operation stopped						
FB	Feedback pin						
SS	Soft-start pin, programming by						
33	external capacitance						
	OVP detection pin, The OVP						
SENSE	voltage set by outside two						
	resistances.						
SGND	Signal ground pin						
PGND	Power ground pin						

❖ ORDER/MARKING INFORMATION

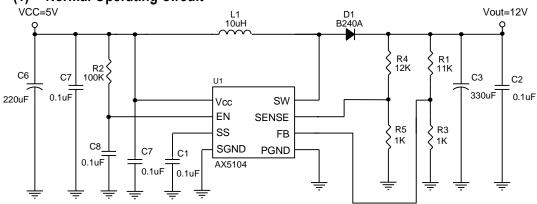
Order Information	Top Marking
Package Type Packing ES: SOP-8L-EP Blank: Tube A: Taping	Logo ← AX 5 1 0 4 → Part number YY WW X → ID code:internal WW: 01~52 → Year: 10=2010 11=2011

ABSOLUTE MAXIMUM RATINGS (at T_A=25°C)

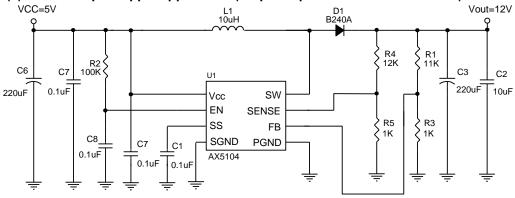
Characteristics	Symbol	Rating	Unit
VCC Pin Voltage	V _{CC}	GND - 0.3 to GND + 24	V
Feedback Pin Voltage	V_{FB}	GND - 0.3 to 6	٧
EN Pin Voltage	V_{EN}	GND - 0.3 to V_{CC}	٧
Switch Pin Voltage	V_{SW}	GND - 0.3 to 26	٧
SS Pin Voltage	V_{SS}	GND - 0.3 to 6	٧
SENSE Pin Voltage	V_{SENSE}	GND - 0.3 to 3	٧
Power Dissipation	PD	Internally limited	mW
Storage Temperature Range	T _{ST}	-40 to +150	°C
Operating Junction Temperature	T _{OPJ}	-20 to +125	°C
Thermal Resistance from Junction to case	θЈС	15	°C/W
Thermal Resistance from Junction to ambient	θ_{JA}	40	°C/W

Note: θ_{JA} is measured with the PCB copper area of approximately 2 in 2 (Multi-layer) that need connect to exposed pad.

*** ELECTRICAL CHARACTERISTICS**


(V_{IN} = 5V, V_{OUT}=12V, T_A=25°C, unless otherwise specified)

Characteristics Symbol Conditions		Min	Тур	Max	Units	
Operating Supply Voltage	Vcc		4	-	23	V
Output Voltage Range	Vout		4.5	-	25	V
Feedback Voltage	V_{FB}	I _{OUT} =0.1A	0.98	1.00	1.02	V
Feedback Bias Current	I _{FB}	I _{OUT} =0.1A	-	0.1	0.5	uA
Quiescent Current	Iccq	V _{FB} =1.5V force driver off	-	5	7	mA
Shutdown Supply Current	I _{SD}	V _{EN} =0V	-	1	10	uA
Switch Current	I _{SW}		1.8	-	-	Α
Oscillation Frequency	Fosc	SW pin	600	800	1000	KHz
Saturation Voltage	V_{SAT}	I _{SW} =1.5A	-	1.0	1.2	V
Saturation Voltage	V SAT	I _{SW} =0.6A	-	0.8	0.95	\ \
SS charge current	I _{SS}		-	4	-	uA
EN Pin Logic input threshold	V_{SH}	High (regulator ON)	2.0	-	-	V
voltage	V _{SL}	Low (regulator OFF)	-	-	8.0	V


SENSE Voltage	V _{SENSE}	If happened, Driver OFF	0.97	1.00	1.03	V
SNESE Pin Bias Current	I _{SENSE}	V _{SENSE} =1.25V	-	10	100	nΑ
		$V_{CC} = 5V, V_{OUT} = 12V$ $I_{OUT} = 0.2A$	-	83	-	%
Efficiency	EFFI	V _{CC} = 12V, V _{OUT} = 24V I _{OUT} = 0.5A	-	90	1	%
Maximum Duty Cycle	DC _{MAX}	V _{FB} =0V	-	83	-	%
Minimum Duty Cycle	DC _{MIN}	V _{FB} =1.5V	-	0	-	70
Thermal shutdown	T _{SD}		-	145	-	°C
Thermal shutdown recovery	T _{SDR}		-	30	-	C

*** APPLICATION CIRCUIT**

(1) Normal Operating Circuit

(2) Low Output Ripple application (output capacitor use a 10uF MLCC)

$$V_{OUT} = V_{FB} \times (1 + \frac{R1}{R3}), V_{FB} = 1.0V, R3 = 1K \sim 3K\Omega$$

FUNCTION DESCRIPTIONS

PWM Control

The AX5104 consists of DC/DC converters that employ a pulse-width modulation (PWM) system. In converters of the AX5104, the pulse width varies in a range from 0 to 83%, according to the load current. The ripple voltage produced by the switching can easily be removed through a filter because the switching frequency remains constant. Therefore, these converters provide a low-ripple power over broad ranges of input voltage and load current.

Soft Start

The soft start time is set by outside capacitor (C1). There is 4uA soft start current to charge C1, the real soft-start time is depend on SS voltage from 0.4 to 1V.

Current Limiting

The current limit threshold is setting by the internal circuit.

Over Voltage Protection (OVP)

The OVP function is preventing V_{OUT} overshooting for system unusually working (R1 floating, LED burn-out for LED application.) The OVP voltage is set by output resistance, please refer the following equation:

$$V_{\text{OVP}} = V_{\text{SENSE}} \times \left(1 + \frac{R4}{R5}\right)$$
, $V_{\text{SENSE}} = 1V$, R5 suggest 1K~10K Ω

If $V_{SENSE}>1V$ and SS voltage is more than 1V, The OVP is happened, the driver is turned off until $V_{SENSE}<1V$. However, the OVP function can keep V_{OUT} to V_{OVP} voltage. If the OVP function is not used, please connect the sense pin to ground.

❖ APPLICATION INFORMATION

Setting the Output Voltage

Application circuit item shows the basic application circuit with AX5104 adjustable output version. The external resistor sets the output voltage according to the following equation:

$$V_{OUT} = 1.0V \times \left(1 + \frac{R1}{R3}\right)$$

Table 1 Resistor select for output voltage setting

		-
V _{OUT}	R3	R1
12V	1K	11K
15V	1.3K	18K
18V	1.3K	22K
24V	1.3K	30K

Inductor Selection

For most designs, Low inductance values are physically smaller but require faster switching, which results in some efficiency loss. The inductor value can be derived from the following equation:

$$L = \frac{V_{IN} \times (V_{OUT} - V_{IN})}{V_{OUT} \times \Delta I_{L} \times f_{LX}}$$

Where is inductor Ripple Current. Large value inductors lower ripple current and small value inductors result in high ripple currents. Choose inductor ripple current approximately 15% of the maximum input current 1.8A, ΔI_L =0.28A.

Table 2 Inductor select for output voltage setting (V_{CC}=5V)

V _{OUT}	9V	12V	15V	18V
L1 Value	10uH	12uH	15uH	15uH

The DC current rating of the inductor should be at least equal to the maximum load current plus half the ripple current to prevent core saturation (1.8A+0.14A).

Input Capacitor Selection

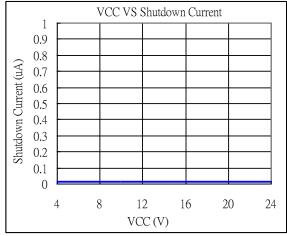
The input capacitor reduces the surge current drawn from the input and switching noise from the device. The input capacitor impedance at the switching frequency shall be less than input source impedance to prevent high frequency switching current passing to the input. A low ESR input capacitor sized for maximum RMS current must be used.

The capacitor voltage rating should be at least 1.5 times greater than the input voltage, and often much higher voltage ratings are needed to satisfy.

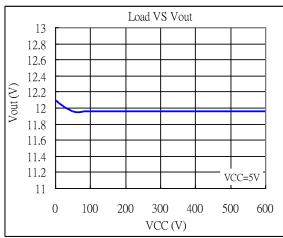
Output Capacitor Selection

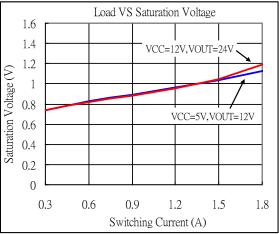
The output capacitor is required to keep the output voltage ripple small and to ensure regulation loop stability. The output capacitor must have low impedance at the switching frequency. A low ESR capacitor sized for maximum RMS current must be used. The low ESR requirements needed for low output ripple voltage.

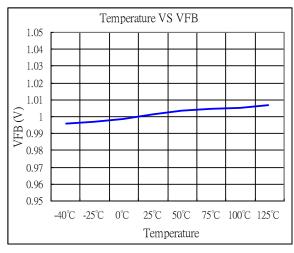
The capacitor voltage rating should be at least 1.5 times greater than the input voltage, and often much higher voltage ratings are needed to satisfy.

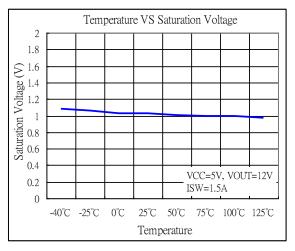

PCB layout guide

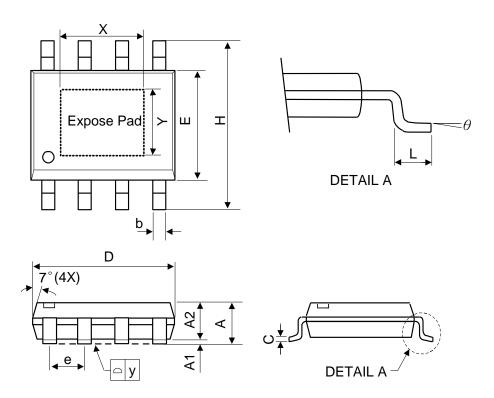

If you need low Tc and Tj or large PD (Power Dissipation), The Expose-Pad at the SOP-8L package are internally connected to die pad, The PCB layout should allow for maximum possible copper area at the Expose-Pad.


- 1. The power traces, including the Source trace, the Schottky and the C6 trace should be kept short, direct and wide to allow large current flow.
- 2. Connect C7 to V_{CC} pin and signal ground as closely as possible to get good power filter effect.
- 3. Connect power ground (pin8) to C6's ground as closely as possible.
- 4. Do not trace signal line under inductor




* TYPICAL CHARACTERISTICS





❖ PACKAGE OUTLINES

Symbol	Dimensions in Millimeters			Dimensions in Inches		
Symbol	Min.	Nom.	Max.	Min.	Nom.	Max.
Α	-	-	1.75	-	-	0.069
A1	0	-	0.15	0	-	0.06
A2	1.25	-	-	0.049	-	-
С	0.1	0.2	0.25	0.0075	0.008	0.01
D	4.7	4.9	5.1	0.185	0.193	0.2
Е	3.7	3.9	4.1	0.146	0.154	0.161
Н	5.8	6	6.2	0.228	0.236	0.244
L	0.4	-	1.27	0.015	-	0.05
b	0.31	0.41	0.51	0.012	0.016	0.02
е	1.27 BSC			0.050 BSC		
у	-	-	0.1	-	-	0.004
Х	-	2.34	-	-	0.092	-
Y	-	2.34	=	-	0.092	=
θ	00	-	8 0	00	-	80

Mold flash shall not exceed 0.25mm per side

JEDEC outline: MS-012 BA