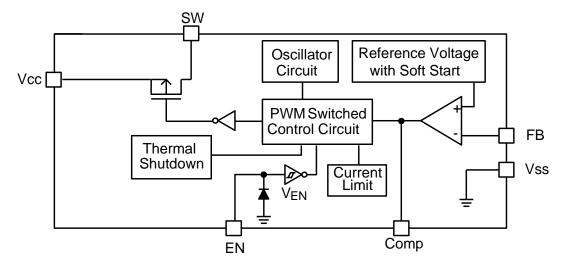
PWM Control 2A Step-Down Converter

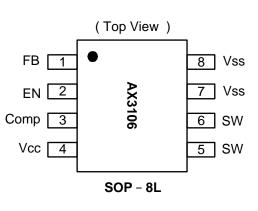
✤ GENERAL DESCRIPTION

AX3106 consists of step-down switching regulator with PWM control. These devise include a reference voltage source, oscillation circuit, error amplifier, internal PMOS and etc.


AX3106 provides low-ripple power, high efficiency, and excellent transient characteristics. The PWM control circuit is able to very the duty ratio linearly form 0 up to 100%. This converter also contains an error amplifier circuit as well as a soft-start circuit that prevents overshoot at startup. An enable function, an over current protect function and short circuit protect function are built inside, and when OCP or SCP happens, the operation frequency will be reduced. Also, an internal compensation block is built in to minimum external component count.

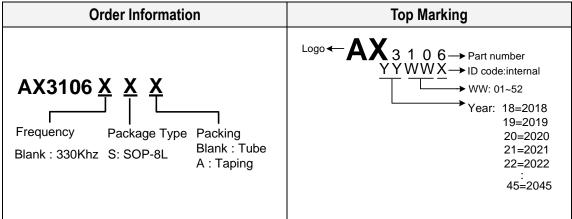
With the addition of an internal P-channel Power MOS, a coil, capacitors, and a diode connected externally, these ICs can function as step-down switching regulators. They serve as ideal power supply units for portable devices when coupled with the SOP-8L package, providing such outstanding features as low current consumption. Since this converter can accommodate an input voltage up to 23V, it is also suitable for the operation via an AC adapter.

✤ FEATURES


- Input voltage : 3.6V to 23V
- Output voltage : 0.8V to V_{CC}
- Duty ratio : 0% to 100% PWM control
- Oscillation frequency : 330KHz typ.
- Soft-start (SS), Current Limit (CL), Enable function.
- Thermal Shutdown function.
- Short Circuit Protect (SCP).
- Built-in internal SW P-channel MOS.
- Low ESR output capacitor (Multi-layer chip capacitor (MLCC)) application.
- SOP-8L Pb-Free package.
- RoHS and Halogen free compliance.

✤ BLOCK DIAGRAM

✤ PIN ASSIGNMET


The package of AX3106 is SOP-8L; the pin assignment is given by:

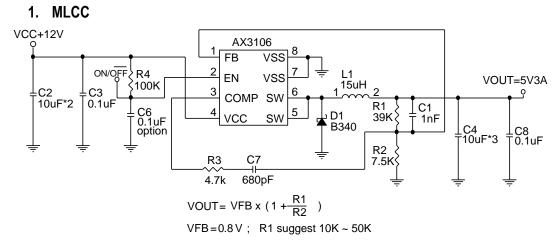
Name	Description				
FB	Feedback pin				
EN	Power-off pin H : normal operation(Step-down) L : Step-down operation stopped (All circuits deactivated)				
Comp	Compensation pin				
Vcc	IC power supply pin				
SW	Switch pin. Connect external inductor/diode here.				
Vss	GND pin				

Axelite Confidential Materials, do not copy or distribute without written consent.

✤ ORDER/MARKING INFORMATION

✤ ABSOLUTE MAXIMUM RATINGS (at T_A=25 °C)

Characteristics	Symbol	Rating	Unit
VCC Pin Voltage	Vcc	V _{SS} - 0.3 to V _{SS} + 25	V
Feedback Pin Voltage	V _{FB}	V_{SS} - 0.3 to V_{CC}	V
ON/OFF Pin Voltage	V _{EN}	V_{SS} - 0.3 to V_{CC} + 0.3	V
Switch Pin Voltage	Vsw	V_{SS} - 0.3 to V_{CC} + 0.3	V
Power Dissipation	PD	Internally limited	mW
Storage Temperature Range	T _{ST}	-40 to +150	°C
Operating Junction Temperature Range	TJ	-20 to +125	°C
Operating Supply Voltage	V _{OP}	+3.6 to +20	V
Thermal Resistance from Junction to case	θ _{JC}	25	°C/W
Thermal Resistance from Junction to ambient	θ _{JA}	70	°C/W

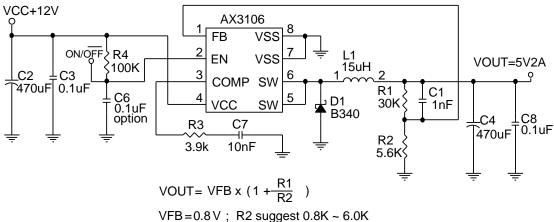

Note: θ_{JA} is measured with the PCB copper area(need connect to SW pins) of approximately 1 in²(Multi-layer).

AX3106 22 axelite 亞瑟萊特科技股份有限公司 AXElite Technology Co.,Ltd

✤ ELECTRICAL CHARACTERISTICS (V_{IN} = 12V, T_A=25°C, unless otherwise specified)

Characteristics Symb		Conditions		Min	Тур	Max	Units
Feedback Voltage	V _{FB}	I _{OUT} =0.2A		0.784	0.8	0.816	V
Quiescent Current	I _{CCQ}	V _{FB} =1.2V force driver off			3	5	mA
Feedback Bias Current	I _{FB}	I _{о∪т} =0.2А		-	0.1	0.5	uA
Shutdown Supply Current	I _{SD}	V _{EN} =0V		-	2	10	uA
Current Limit	I _{CL}			3.0	-	-	А
Line Degulation	∆ Vout/Vout	V _{CC} =4V~2	23V,	-	0.6	1.2	0/
Line Regulation		I _{о∪т} =0.2А	IOUT=0.2A				%
Load Regulation	Δ Vout/Vout	I _{OUT} = 0.2 to 2A		I	0.15	0.3	%
Oscillation Frequency	Discillation Frequency Fosc SW pin			260	330	400	KHz
EN Pin Logic input threshold	V _{SH}	High (regulator ON)		2.0	-	-	V
voltage	V _{SL}	Low(regulator OFF)		-	-	0.8	V
EN Din Input Current	I _{SH}	V _{EN} =2.5V	(ON)	-	20	-	uA
EN Pin Input Current	I _{SL}	V _{EN} =0.3V (OFF)		-	-10	-	uA
Soft-Start Time	T _{SS}			-	20	-	ms
Internal MOSFET RDSON	RDSON	V _{CC} =12V,	V _{FB} =0V	-	70	-	mΩ
Efficiency	EFFI	V _{OUT} =	I _{OUT} = 1A	-	92	-	0/
Efficiency		5V	I _{OUT} = 2A	-	92	-	%
Thermal shutdown Temp	T _{SD}				125		°C

✤ APPLICATION CIRCUIT



4/13

AX3106 22 axelite 亞瑟萊特科技股份有限公司 AXElite Technology Co.,Ltd

Compensation Capacitor Selection(MLCC)							
V _{IN}	VIN VOUT L1 R3 C7 C1						
12V	5.0/3.3/2.5V	15uH	4.7K	680pF	1nF		
5V 3.3/2.5V 15uH 6.8K 470pF 1nF							

2. EL CAP

Compensation Capacitor Selection(EL CAP)							
V _{IN}	VIN VOUT L1 R3 C7 C1						
5-20V	5.0/3.3/2.5/1.8V	15µH	3.9K	10nF	1nF		

FUNCTION DESCRIPTIONS PWM Control

The AX3106 consists of DC/DC converters that employ a pulse-width modulation (PWM) system. In converters of the AX3106, the pulse width varies in a range from 0 to 100%, according to the load current. The ripple voltage produced by the switching can easily be removed through a filter because the switching frequency remains constant. Therefore, these converters provide a low-ripple power over broad ranges of input voltage and load current.

AX3106 axelite 亞瑟萊特科技股份有限公司 AXElite Technology Co.,Ltd

Setting the Output Voltage

Application circuit item shows the basic application circuit with adjustable output version. The external resistor sets the output voltage according to the following equation:

$$V_{OUT} = 0.8V \times \left(1 + \frac{R1}{R2}\right)$$

Vout	Соит	R2	R1
 \/	EL	1.3K	6.8K
5V	MLCC	7.5K	39K
3.3V	EL	1.5K	4.7K
3.3V	MLCC	15K	47K
2.5V	EL	2.2K	4.7K
	MLCC	22K	47K
1.8V	EL	2K	2.5K
1.5V	EL	2.2K	2.0K
1.2V	EL	3K	1.5K

Table 1 Resistor select for output voltage setting

Inductor Selection

For most designs, the operates with inductors of 15μ H to 33μ H. The inductor value can be derived from the following equation:

$$L = \frac{V_{OUT} \times (V_{IN} - V_{OUT})}{V_{IN} \times \Delta I_{L} \times f_{OSC}}$$

Where is inductor Ripple Current. Large value inductors lower ripple current and small value inductors result in high ripple currents. Choose inductor ripple current approximately 15% of the maximum load current 2A, ΔI_L =0.3A. The DC current rating of the inductor should be at least equal to the maximum load current plus half the ripple current to prevent core saturation (2A+0.15A).

Input Capacitor Selection

(EL CAP)

This capacitor should be located close to the IC using short leads and the voltage rating should be approximately 1.5 times the maximum input voltage. The RMS current rating requirement for the input capacitor of a buck regulator is approximately 1/2 the DC load current. A low ESR input capacitor sized for maximum RMS current must be used. A 220µF low ESR capacitor for most applications is sufficient.

(MLCC)

A 22 μ F MLCC or greater capacitor for most applications is sufficient. Note: MLCC do not support when V_{OUT} is smaller than 2.5V.

Output Capacitor Selection

(EL CAP)

The output capacitor is required to filter the output and provide regulator loop stability. The important capacitor parameters are; the 100KHz Equivalent Series Resistance (ESR), the RMS ripples current rating, voltage rating, and capacitance value. For the output capacitor, the ESR value is the most important parameter. The ESR can be calculated from the following formula.

$$V_{RIPPLE} = \Delta I_L \times ESR = 0.33A \times 130m\Omega = 43mV$$

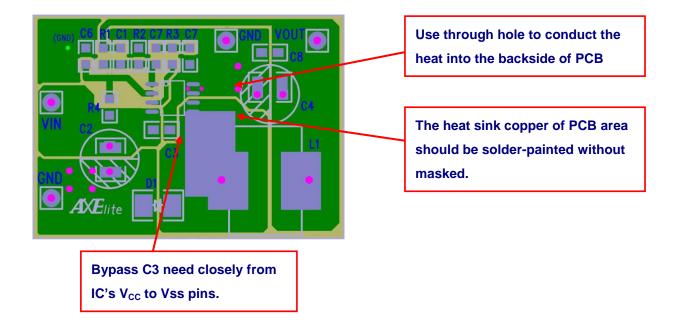
An aluminum electrolytic capacitor's ESR value is related to the capacitance and its voltage rating. In most case, higher voltage electrolytic capacitors have lower ESR values. Most of the time, capacitors with much higher voltage ratings may be needed to provide the low ESR values required for low output ripple voltage. It is recommended to replace this low ESR capacitor by using a 330 μ F low ESR values < 130m Ω .

(MLCC CAP)

A 22µF MLCC capacitor for most applications is sufficient.

RDS (ON) Current Limiting

The current limit threshold is setting by the internal circuit.


V _{IN}	4V~4.6V	4.6V~8V	8V~20V
I _{CL} (MIN)	2.5A	2.8A	3.0A
I _{OUT} (MAX)	1.8A	2A	2A

PCB Layout Guide

If you need low Tc and Tj or large PD(Power Dissipation), The dual SW pins(5 and 6) and V_{SS} pins(7 and 8)on the SOP-8L package are internally connected to die pad, The PCB layout should allow for maximum possible copper area at the SW pins.

1. Connect C3 to V_{CC} and V_{SS} pin as closely as possible to get good power filter effect.

2. Connect ground side of the C2 & D1 as closely as possible.

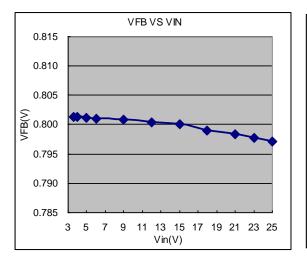
✤ TYPICAL CHARACTERISTICS

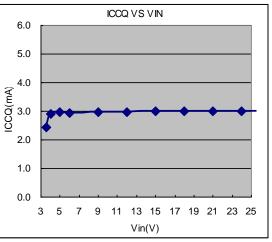
0.810

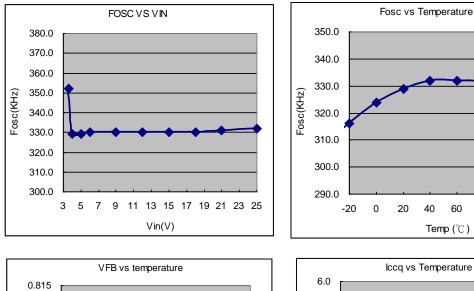
0.805

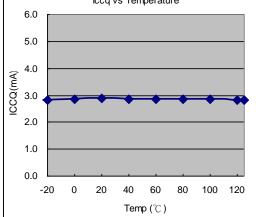
0.795

0.790


0.785

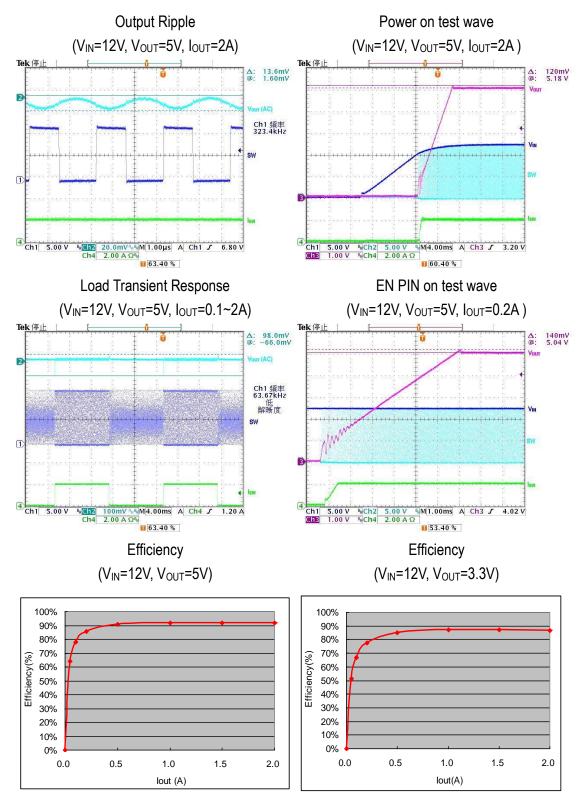

-20 0 20


40 60 80


Temp (°C)

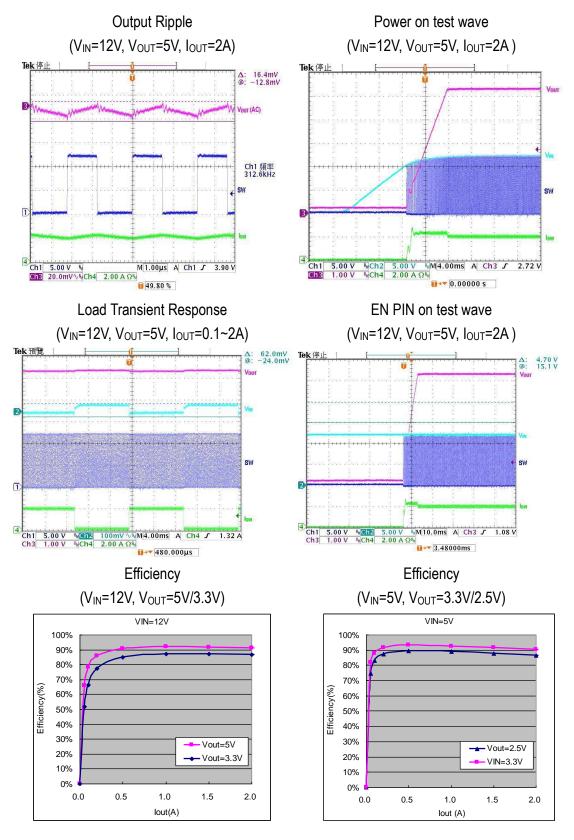
() VFB() 0.800

80

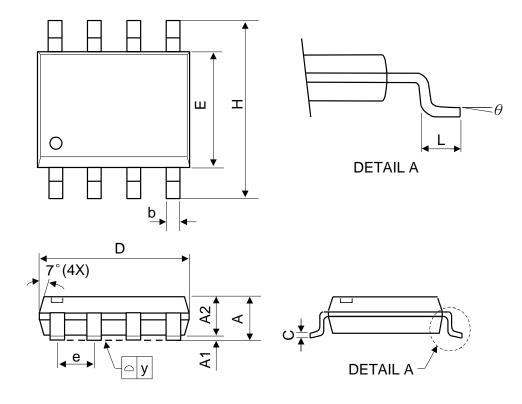

100 120

100 120

AX3106 22 axelite 型瑟萊特科技股份有限公司 AXElite Technology Co.,Ltd


✤ TYPICAL CHARACTERISTICS (MLCC)

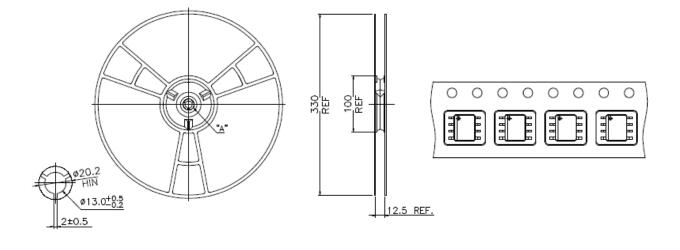
10/13

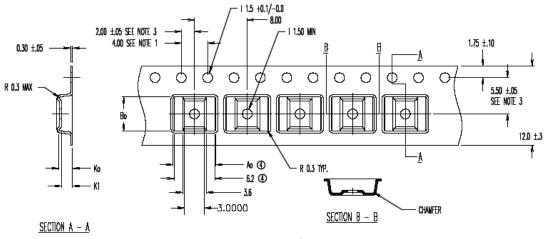

AX3106 空瑟萊特科技股份有限公司 AXElite Technology Co.,Ltd

✤ TYPICAL CHARACTERISTICS (EL CAP)

11/13

✤ PACKAGE OUTLINES




Symbol	Dime	Dimensions in Millimeters			Dimensions in Inches		
	Min.	Nom.	Max.	Min.	Nom.	Max.	
A	-	-	1.75	-	-	0.069	
A1	0.1	-	0.25	0.04	-	0.1	
A2	1.25	-	-	0.049	-	-	
С	0.1	0.2	0.25	0.0075	0.008	0.01	
D	4.7	4.9	5.1	0.185	0.193	0.2	
E	3.7	3.9	4.1	0.146	0.154	0.161	
Н	5.8	6	6.2	0.228	0.236	0.244	
L	0.4	-	1.27	0.015	-	0.05	
b	0.31	0.41	0.51	0.012	0.016	0.02	
е	1.27 BSC			().050 BSC		
у	-	-	0.1	-	-	0.004	
θ	0 0	-	8 0	00	-	80	

Mold flash shall not exceed 0.25mm per side JEDEC outline: MS-012 AA

Carrier tape dimension

©⊙ Ao = 6.50

Bo = 5.20 Ko = 2.10

K1 = 1.70

Notes:

- 1. 10 sprocket hole pitch cumulative tolerance ± 0.2mm
- 2. Camber not to exceed 1mm in 100mm.
 - Material: Anti-Static Black Advantek Polystyrene.
 Ao and Bo measured on a plane 0.3mm above
 - the bottom of the pocket.5. Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier.
 - the pocket to the top surface of the carrier.6. Pocket position relative to sprocket hole measured as true position of pocket, not pocket hole.

Axelite Confidential Materials, do not copy or distribute without written consent.