2A，0．25V Feedback Voltage Step－Down

Switching Regulators for LED Driver

＊GENERAL DESCRIPTION

AX2002 consists of step－down switching regulator with PWM control．These devise include a reference voltage source，oscillation circuit，error amplifier，internal PMOS and etc．

AX2002 provides low－ripple power，high efficiency，and excellent transient characteristics．The PWM control circuit is able to the duty ratio linearly from 0 up to 100% ． An enable function，an over current protect function and short circuit protect function are built inside，and when OCP or SCP happens，the operation frequency will be reduced．Also， an internal compensation block is built in to minimum external component count．

With the addition of an internal P－channel Power MOS，a coil，capacitors，and a diode connected externally，these ICs can function as step－down switching regulators．They serve as ideal power supply units for portable devices when coupled with the SOP－8L package， providing such outstanding features as low current consumption．Since this converter can accommodate an input voltage up to 23 V ，it is also suitable for the operation via an AC adapter．

＊FEATURES

－Input voltage ： 3.6 V to 23 V
－Output voltage ： 0.25 V to V_{cc}
－LED Backlight and High Power LED Application
－Duty ratio：0\％to 100\％PWM control
－Oscillation frequency：330KHz typ．
－Enable／Disable function．
－Current Limit（CL），Thermal Shutdown and Short Circuit Protections（SCP）．
－Built－in internal SW P－channel MOS．
－No output capacitor is stable．
－SOP－8L Pb－Free package．
－RoHS and Halogen free compliance

BLOCK DIAGRAM

PIN ASSIGNMET

The package of AX2002 is SOP-8L; the pin assignment is given by:

ORDER/MARKING INFORMATION

Order Information	Top Marking
AX2002 $\underset{\sim}{\mathbf{X}} \underset{\sim}{\mathbf{X}}$ Package Type Packing S: SOP-8L Blank: Tube A : Taping	

* ABSOLUTE MAXIMUM RATINGS (at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Characteristics	Symbol	Rating	Unit
$V_{C C}$ Pin Voltage	V_{CC}	$\mathrm{V}_{\mathrm{SS}}-0.3$ to $\mathrm{V}_{S S}+25$	V
Feedback Pin Voltage	V_{FB}	$\mathrm{V}_{\mathrm{SS}}-0.3$ to V_{CC}	V
ON/OFF Pin Voltage	V_{EN}	$\mathrm{V}_{\mathrm{SS}}-0.3$ to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
Switch Pin Voltage	V_{SW}	$\mathrm{V}_{S S}-0.3$ to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
Power Dissipation	PD	Internally limited	mW
Storage Temperature Range	T_{ST}	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature Range	T_{OP}	-40 to +125	${ }^{\circ} \mathrm{C}$
Operating Supply Voltage	V_{OP}	+3.6 to +23	V
Thermal Resistance from Junction to case	θ_{JC}	60	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance from Junction to ambient	θ_{JA}	120	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note : θ_{JA} is measured with the PCB copper area(need connect to SW pins) of approximately 1 in²(Multi-layer). 2.

* ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathbb{I}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Characteristics	Symbol	Conditions		Min	Typ	Max	Units
Feedback Voltage	$V_{\text {FB }}$	lout $=0.2 \mathrm{~A}$		0.24	0.25	0.26	V
Quiescent Current	Icco	$\mathrm{V}_{\mathrm{FB}}=1.2 \mathrm{~V}$ force driver off			3	5	mA
Feedback Bias Current	$\mathrm{I}_{\text {FB }}$	lout $=0.1 \mathrm{~A}$		-	0.1	0.5	uA
Shutdown Supply Current	ISD	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$		-	2	10	uA
Switch Current	Isw			2.5	-	-	A
Line Regulation	$\Delta \mathrm{V}_{\text {Out }} / \mathrm{V}_{\text {OUt }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \sim 23 \mathrm{~V}, \\ & \text { lout }=0.2 \mathrm{~A} \end{aligned}$		-	1	2	\%
Load Regulation	$\Delta \mathrm{V}_{\text {OUt }} / \mathrm{V}_{\text {OUt }}$	lout $=0.1$ to 2 A		-	0.2	0.5	\%
Oscillation Frequency	Fosc			260	330	400	KHz
EN Pin Logic input threshold	VSH	High (regulator ON)		2.0	-	-	V
voltage	VSL	Low (regulator OFF)		-	-	0.8	
EN Pin Input Current	ISH	$\mathrm{V}_{\mathrm{EN}}=2.5 \mathrm{~V}$ (ON)		-	20	-	uA
	ISL	$\mathrm{V}_{\mathrm{EN}}=0.3 \mathrm{~V}$ (OFF)		-	-10	-	uA
Internal MOSFET R ${ }_{\text {dson }}$	R ${ }_{\text {dson }}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0 \mathrm{~V}$		-	100	140	
		$\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0 \mathrm{~V}$		-	70	100	,
Efficiency	EFFI	$V_{\text {OUt }}=5 \mathrm{~V}$	lout=1A	-	91	-	\%
			lout $=2 \mathrm{~A}$	-	91	-	
Thermal shutdown Temp	TSD			-	150	-	${ }^{\circ} \mathrm{C}$

＊APPLICATION CIRCUIT

A．1W／3W LED＊1 for DC Input

B．1W／3W LED＊1 for AC Input
（1）No Output Capacitor

ILed	R2		C2	R5	L1
350 mA	0.715Ω	87.5 mW	100 uF	0.22 K	
750 mA	0.333Ω	189 mW	220 uF	0.47 K	68 uH
1000 mA	0.250Ω	250 mW	330 uF	0.47 K	

(2) Add 4.7uF Output Capacitor

ILeD	R2		C2	C4	L1
350 mA	0.715Ω	87.5 mW	100 uF		
750 mA	0.333Ω	189 mW	220 uF	10 nF	33 uH
1000 mA	0.250Ω	250 mW	330 uF		

FUNCTION DESCRIPTIONS

PWM Control

The AX2002 consists of DC/DC converters that employ a pulse-width modulation (PWM) system. In converters of the AX2002, the pulse width varies in a range from 0 to 100%, according to the load current. The ripple voltage produced by the switching can easily be removed through a filter because the switching frequency remains constant. Therefore, these converters provide a low-ripple power over broad ranges of input voltage and load current.

Setting the ILed Current

Application circuit item shows the basic application circuit with AX2002 adjustable output version. The external resistor sets the LED output current according to the following equation:

$$
I_{L E D}=\left(\frac{0.25 \mathrm{~V}}{R 2}\right)
$$

Table 1 Resistor select for LED output current setting

ILED	R2	
350 mA	0.715Ω	87.5 mW
750 mA	0.333Ω	189 mW
1000 mA	0.250Ω	250 mW

RDS (ON) Current Limiting

The current limit threshold is setting by the internal circuit.

Compensation

Please refer the table of application circuit. For DC input, the option circuit for compensation is connecting R4 and a 4148 diode to $\mathrm{V}_{\text {out }}$. In order to protect short circuit and thermal shutdown release for LED.

PCB layout guide

If you need low Tc and Tj or large PD (Power Dissipation), the dual SW pins (5 and 6) on the SOP-8L package are internally connected to die pad, The PCB layout should allow for maximum possible copper area at the SW pins of the AX2002.

＊TYPICAL CHARACTERISTICS

＊PACKAGE OUTLINES

DETAIL A

Symbol	Dimensions in Millimeters			Dimensions in Inches									
	Min．	Nom．	Max．	Min．	Nom．	Max．							
A	-	-	1.75	-	-	0.069							
A1	0.1	-	0.25	0.04	-	0.1							
A2	1.25	-	-	0.049	-	-							
C	0.1	0.2	0.25	0.0075	0.008	0.01							
D	4.7	4.9	5.1	0.185	0.193	0.2							
E	3.7	3.9	4.1	0.146	0.154	0.161							
H	5.8	6	6.2	0.228	0.236	0.244							
L	0.4	-	1.27	0.015	-	0.05							
b	0.31	0.41	0.51	0.012	0.016	0.02							
e	1.27 BSC										0.050 BSC		
y	-	-	0.1	-	-	0.004							
θ	00	-	80	00	-	8^{0}							

Mold flash shall not exceed 0.25 mm per side
JEDEC outline：MS－012 AA

＊Carrier tape dimension

SOP8L

（4）（1）$k p=6.50$
$\mathrm{BD}_{0}=520$
$k_{0}=210$
$k_{1}=1.70$
Notes：
1． 10 sprocket hole pitch cumulative tolerance $\pm 0.2 \mathrm{~mm}$
2．Camber not to exceed 1 mm in 100 mm ．
3．Material：Anti－Static Black Advantek Polystyrene．
4．Ao and Bo measured on a plane 0.3 mm above the bottom of the pocket．
5．Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier．
6．Pocket position relative to sprocket hole measured as true position of pocket，not pocket hole．

