PWM Control 3A Step-Down Converter

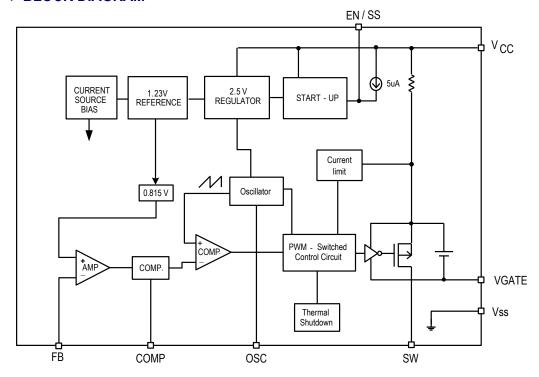
❖ GENERAL DESCRIPTION

AX3133 consists of step-down switching regulator with PWM control. These devise include a reference voltage source, oscillation circuit, error amplifier, internal PMOS and etc.

AX3133 provides low-ripple power, high efficiency, and excellent transient characteristics. The PWM control circuit is able to the duty ratio linearly form 0 up to 100%. This converter is build out soft start function that prevents overshoot and inrush current at startup. An over current protect function and short circuit protect function are built inside, and when OCP or SCP happens, the operation frequency will be reduced. The operating frequency is decided by outside resistance. An external compensation is easily to system stable; the low ESR output capacitor can be used.

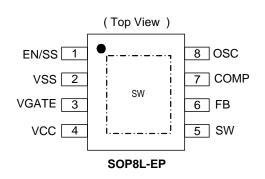
With the addition of an internal P-channel Power MOS, a coil, capacitors, and a diode connected externally, these ICs can function as step-down switching regulators. They serve as ideal power supply units for portable devices when coupled with the SOP-8L with exposed pad package, providing such outstanding features as low current consumption. Since this converter can accommodate an input voltage up to 32V, it is also suitable for the operation via an AC adapter.

FEATURES

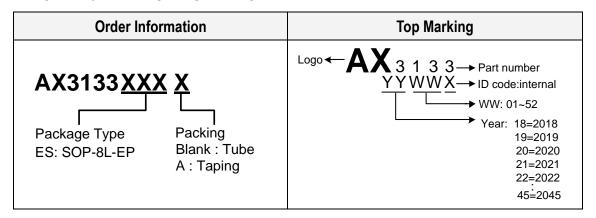

- Input voltage: 8V to 33V Output voltage : 3.3V to 26V

- Duty ratio: 0% to 100% PWM control

- Oscillation frequency range is 50K~350KHz by outside resistance setting
- Enable with Soft-Start function
- Current Limit, Short Circuit Protect (SCP) and Thermal Shutdown protection
- Built-in internal SW P-channel MOS.
- SOP-8L-EP Pb-Free package.
- RoHS and Halogen free compliance.



*** BLOCK DIAGRAM**


PIN ASSIGNMENT

The package of AX3133 is SOP-8L-EP; the pin assignment is given by:

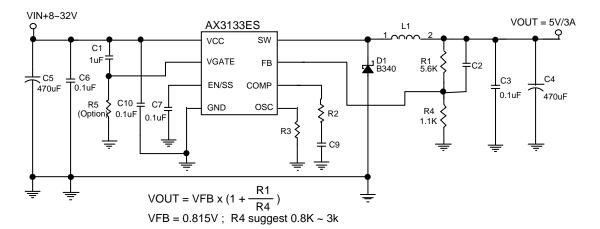
Name	Description
EN/SS	ON/OFF Shutdown and Soft-start
EIN/33	pin
VSS	GND pin
	Driver GATE clamping pin. The
VGATE	pin must connect a 1uF capacitor
	to VCC
VCC	IC power supply pin
SW	Switch pin. Connect external
	inductor & diode here.
FB	Feedback pin
COMP	Compensation pin
osc	Frequency Set Pin. The pin
030	connect a resistance to GND.

❖ ORDER/MARKING INFORMATION

❖ ABSOLUTE MAXIMUM RATINGS (at T_A=25°C)

Characteristics	Symbol	Rating	Unit
VCC Pin Voltage	Vcc	$V_{\rm SS}$ - 0.3 to $V_{\rm SS}$ + 36	V
Feedback Pin Voltage	V_{FB}	V _{SS} - 0.3 to 6	V
EN/SS Pin Voltage	V _{EN/SS}	V _{SS} - 0.3 to 6	V
OSC Pin Voltage	Vosc	V _{SS} - 0.3 to 3	V
COMP Pin Voltage	V_{COMP}	V_{SS} - 0.3 to 6	V
VGATE Pin Voltage	V_{GATE}	V_{SS} - 0.3 to V_{CC}	V
Switch Pin Voltage	V_{SW}	V_{SS} - 0.3 to V_{CC} + 0.3	V
Power Dissipation	PD	Internally limited	mW
Storage Temperature Range	T _{ST}	-65 to +150	°C
Operating Junction Temperature Range	T _{OJP}	-40 to +125	°C
Operating Supply Voltage	V_{OP}	8 to 32	V
Thermal Resistance from Junction to case	θЈС	15	°C/W
Thermal Resistance from Junction to ambient	θја	40	°C/W

Note: θ_{JA} is measured with the PCB copper area (need connect to Exposed Pad) of approximately 1.5 in² (Multi-layer).


*** ELECTRICAL CHARACTERISTICS**

(V_{CC} = 12V, T_A=25°C, unless otherwise specified)

Characteristics	Symbol	Conditions	Min	Тур	Max	Units
Feedback Voltage	V_{FB}	V _{CC} = 10V~32V I _{OUT} = 0 to 2A Tj=-20°C ~125°C	0.800	0.815	0.830	V
Quiescent Current	Iccq	V _{FB} =1.2V force driver off	-	3	6	mA
Feedback Bias Current	I _{FB}	I _{ОUТ} =0.1А	-	0.1	0.5	uA
Shutdown Supply Current	I _{SD}	V _{EN/SS} =0V	-	3	6	mA
Current Limit	I _{CL}		3.3	-	-	Α
Adjustable frequency range	Fosc		50	-	380	KHz
Short frequency	Fosc ₁	V _{CC} = 10V~32V	45	50	55	KHz
EN/SS Pin Shutdown Logic input threshold voltage	V _{ENL}		-	-	0.8	V
EN/SS Pull high Current	I _{EN/SS}	V _{EN/SS} =0V	-	5	-	uA
Internal MOSFET R _{DSON}	R _{DSON}	V _{CC} =12V, V _{FB} =0V	-	60	110	mΩ
Efficiency	EFFI	V _{CC} = 12V, V _{OUT} = 5V, I _{OUT} = 2A	_	91	-	%
		$V_{CC} = 28V,$ $V_{OUT} = 5V,$ $I_{OUT} = 2A$		87		,,

*** APPLICATION CIRCUIT**

EL cap

Compensation Table								
COUT ESR Range	Frequency(Hz)	VIN RANGE	R2	C9	C2	L1		
	50K		100R	4n7	3300p	100u		
30m~80mΩ	150K		100R	4n7	1500p	68u		
301112	250K	9. 2017	470R	10n	1500p	33u		
	350K		470R	1n	680p	22u		
80m~300mΩ	50K	8~30V	100R	4n7	3300p	100u		
	150K		100R	4n7	820p	68u		
	250K		470R	10n	1500p	33u		
	350K]	100R	4n7	180p	22u		

*** FUNCTION DESCRIPTIONS**

EN/SS

This pin can be supplied shutdown or soft start function. It is inside pull high function. For normal application, the pin must be connected a capacitor to ground. There is a 5uA current to charge this capacitor, vary the different capacitor value to control soft start time. Allow the switching regulator circuit to be shutdown pulling this pin below a 0.8V threshold voltage.

OSC

External frequency set pin. The pin connects a resistance (R3) to reduce system frequency. This converter's frequency can be set from 50K to 350KHz, please refer the below table to set frequency.

T=Room Temperature						
R3 (Ω) 10M 240K 110K 68K						
Frequency (Hz)	52K	150K	250K	350K		

COMP

Compensation pin. For EL output capacitor application, the COMP pin connects R2 and C9 to ground for all condition; please refer the compensation table.

APPLICATION INFORMATION

Setting the Output Voltage

Application circuit item shows the basic application circuit with adjustable output version. The external resistor sets the output voltage according to the following equation:

$$\mathbf{V}_{out} = 0.815V \times \left(1 + \frac{\mathbf{R}1}{\mathbf{R}4}\right)$$

Table 1 Resistor select for output voltage setting

V _{OUT}	R4	R1
5V	1.1K	5.6K
3.3V	2.7K	8.2K

Inductor Selection

For most designs, the different frequency can be reducing the inductor value; The AX3133 is suggested 22µH to 100µH for 350K to 50KHz frequencies. Please refer the below table to design.

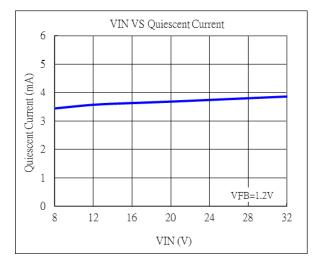
L1 recommend value (V _{IN} =8~32V ,V _{OUT} =5V, I _{OUT} =3A)					
Frequency (Hz) 50K 150K 250K 350K					
L1 Value (H)	100uH	68uH	33uH	22uH	

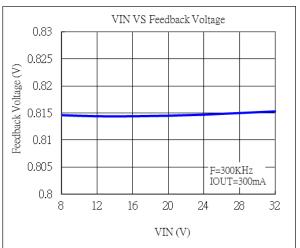
Where is inductor Ripple Current. Large value inductors lower ripple current and small value inductors result in high ripple currents. Choose inductor ripple current approximately 20% of the maximum load current 3A, ΔI_L =0.6A. The DC current rating of the inductor should be at least equal to the maximum load current plus half the ripple current to prevent core saturation (3A+0.3A).

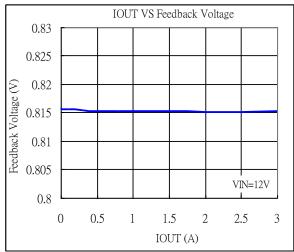
Input Capacitor Selection

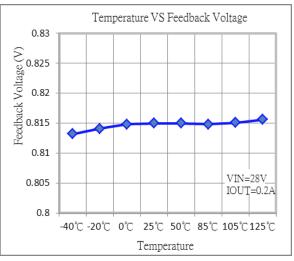
This capacitor should be located close to the IC using short leads and the voltage rating should be approximately 1.5 times the maximum input voltage. The RMS current rating requirement for the input capacitor of a buck regulator is approximately 1/2 the DC load current. A low ESR input capacitor sized for maximum RMS current must be used. A 470µF low ESR capacitor for most applications is sufficient.

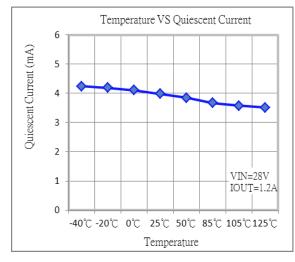
Output Capacitor Selection

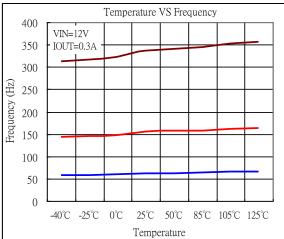

The output capacitor is required to filter the output and provide regulator loop stability. The important capacitor parameters are; the 100 KHz Equivalent Series Resistance (ESR), the RMS ripples current rating, voltage rating, and capacitance value. For the output capacitor, the ESR value is the most important parameter. The ESR can be calculated from the following formula.

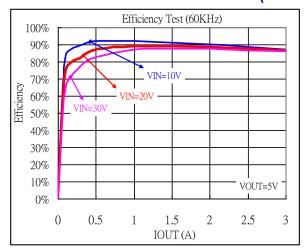

$$V_{RIPPLE} = \Delta I_L \times ESR = 0.6 \text{A x } 80 \text{m}\Omega = 48 \text{mV}$$

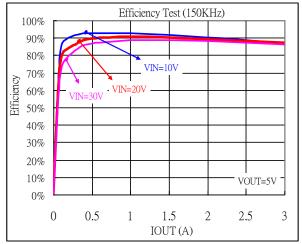

An aluminum electrolytic capacitor's ESR value is related to the capacitance and its voltage rating. In most case, higher voltage electrolytic capacitors have lower ESR values. Most of the time, capacitors with much higher voltage ratings may be needed to provide the low ESR values required for low output ripple voltage. It is recommended to replace this low ESR capacitor by using a 470 μ F low ESR values < 80m Ω .

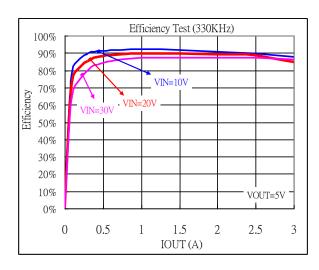


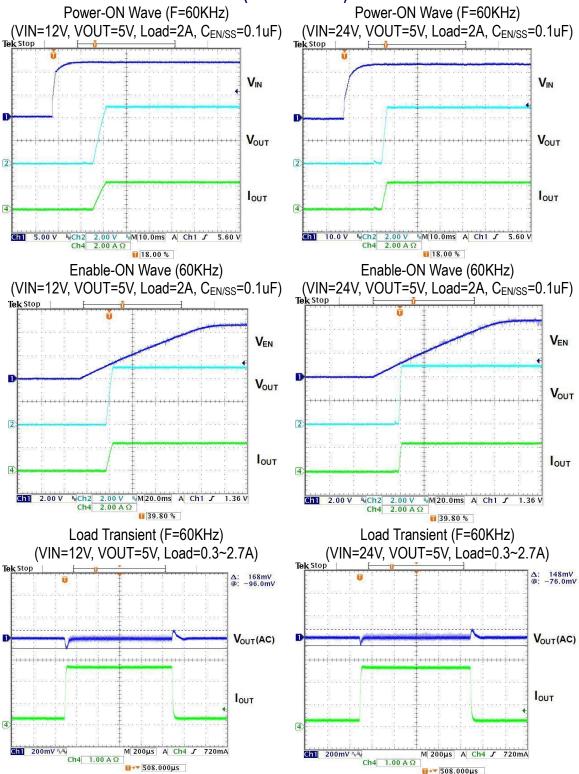

TYPICAL CHARACTERISTICS

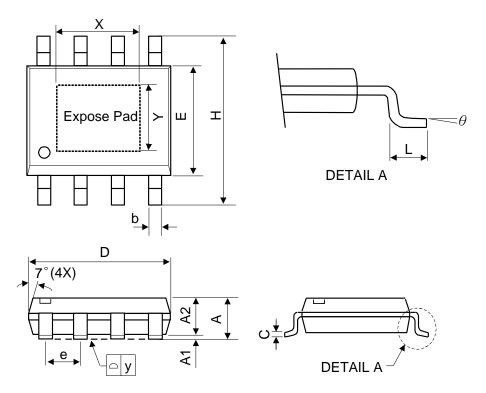








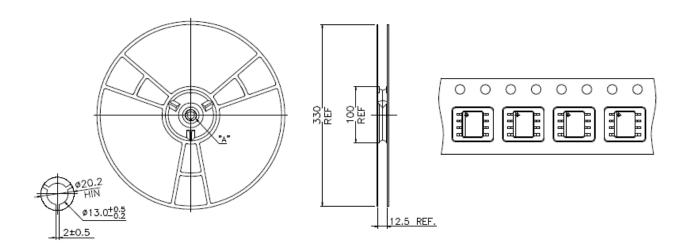

❖ TYPICAL CHARACTERISTICS (CONTINUOUS)

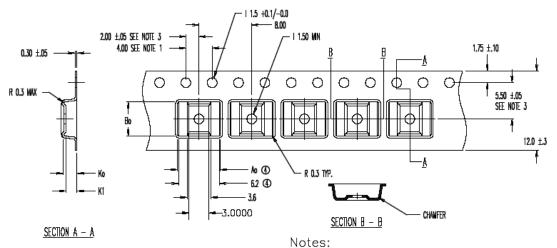


❖ TYPICAL CHARACTERISTICS (CONTINUOUS)

❖ PACKAGE OUTLINES

Symbol	Dimen	sions in Millir	neters	Dim	ensions in Inc	ches
Syllibol	Min.	Nom.	Max.	Min.	Nom.	Max.
Α	-	-	1.75	-	-	0.069
A1	0	-	0.15	0	-	0.06
A2	1.25	-	-	0.049	-	-
С	0.1	0.2	0.25	0.0075	0.008	0.01
D	4.7	4.9	5.1	0.185	0.193	0.2
Е	3.7	3.9	4.1	0.146	0.154	0.161
Н	5.8	6	6.2	0.228	0.236	0.244
L	0.4	-	1.27	0.015	-	0.05
b	0.31	0.41	0.51	0.012	0.016	0.02
е	1.27 BSC			0.050 BSC		
у	-	-	0.1	-	-	0.004
Х	-	2.34	=	-	0.092	-
Y	-	2.34	-	-	0.092	-
θ	00	-	80	00	-	80


Mold flash shall not exceed 0.25mm per side


JEDEC outline: MS-012 BA

❖ Carrier tape dimension

ESOP8L

⊕⊕ Ao = 6.50 Bo = 5.20 Ko = 2.10 K1 = 1.70

- 1. 10 sprocket hole pitch cumulative tolerance \pm 0.2mm
- 2. Camber not to exceed 1mm in 100mm.
- 3. Material: Anti-Static Black Advantek Polystyrene.
- Material: Anti-Static Black Advantek Polystyrene.
 Ao and Bo measured on a plane 0.3mm above the bottom of the pocket.
 Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier.
- Pocket position relative to sprocket hole measured as true position of pocket, not pocket hole.

12/12