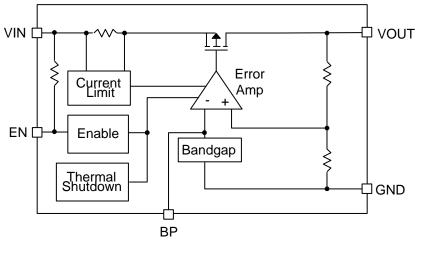
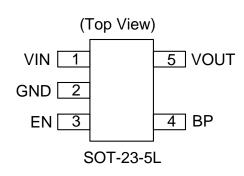
300mA High PSRR, Low Noise LDO

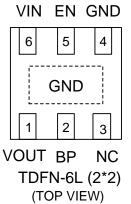
<u>Regulator</u>

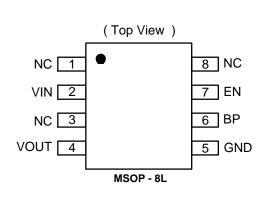

✤ GENERAL DESCRIPTION

The AX6608 is a low dropout, high PSRR, low noise linear regulator with very low quiescent. It can supply 300mA output current with low dropout about 250mV. The Device includes pass element, error amplifier, band-gap, current-limit and thermal shutdown circuitry. The characteristics of low dropout voltage and less quiescent current make it good for some critical current application, for example, some battery powered devices. The typical quiescent current is approximately 30μ A. In the shutdown mode, the maximum supply current is less than 1uA. Due to internal flexible design, result in extensively fixed output voltage versions is 1.0V to 3.3V per 0.1V steps. Built-in current-limit and thermal-shutdown functions prevent any fault condition from IC damage.

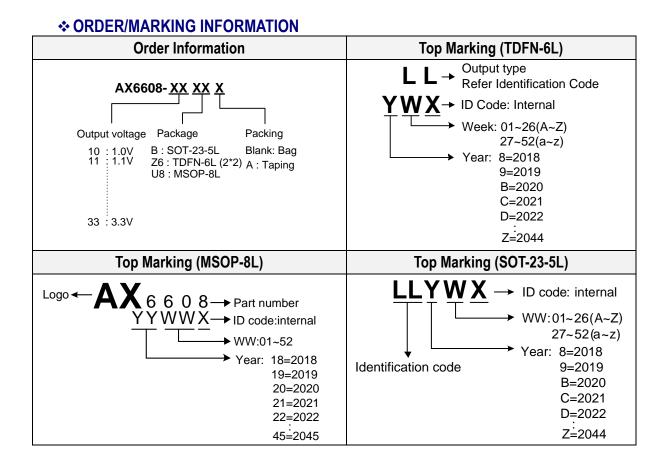
✤ FEATURES


- Input voltage range : 2.8V~5.5V
- Dropout voltage is 250mV at 300mA output current
- Guaranteed 300mA output current
- Low quiescent current is 30µA (typ.)
- Maximum supply current in shutdown mode <1uA
- Fixed Output voltage is 1.0V to 3.3V by 0.1V steps.
- High PSRR=73dB@1KHz
- Fast transient response
- Current limit and thermal shutdown protection
- Available in the 5-Pin Pb-Free SOT-23, TDFN-6L and MSOP-8L Packages
- RoHS and Halogen free compliance.


*** BLOCK DIAGRAM**



* PIN ASSIGNMENT


The packages of AX6608 are SOT-23-5L, TDFN-6L and MSOP-8L; the pin assignment is given by:

Name	Description								
VIN	Voltage input. The input capacitor in the range of 1uF to 10uF is sufficient.								
GND	Ground								
EN	Enable pin (Active High)								
BP	Reference Noise Bypass (The Bypass capacitor $\geq 1nF$								
VOUT	Output Voltage, The AX6608 is stable with an output capacitor 1uF for greate.								
NC	No Connect								

Appendix			
Part	Identification Code	Part	Identification Code
Number	SOT-23-5L/TDFN-6L	Number	SOT-23-5L//TDFN-6L
AX6608-1.0V	UO	AX6608-2.2V	UO
AX6608-1.1V	UA	AX6608-2.3V	Uv
AX6608-1.2V	UB	AX6608-2.4V	UT
AX6608-1.3V	U3	AX6608-2.5V	UF
AX6608-1.4V	U4	AX6608-2.6V	Uf
AX6608-1.5V	UC	AX6608-2.7V	Uw
AX6608-1.6V	US	AX6608-2.8V	UG
AX6608-1.7V	UX	AX6608-2.9V	Uh
AX6608-1.8V	UD	AX6608-3.0V	UH
AX6608-1.9V	Ua	AX6608-3.1V	Ux
AX6608-2.0V	Ue	AX6608-3.2V	UU
AX6608-2.1V	Ub	AX6608-3.3V	UI

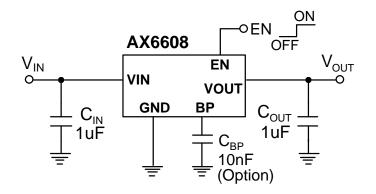
★ ABSOLUTE MAXIMUM RATINGS (at T_A=25°C)

Characteristics	Symbol	Rating	Unit		
V _{IN} Pin Voltage			GND - 0.3 to GND + 6	V	
Output Voltage		V _{OUT}	GND - 0.3 to V _{IN} + 0.3	V	
Enable Voltage		VEN	GND - 0.3 to GND + 6	V	
Power Dissipation		PD	Internally limited	mW	
Storage Temperature Range		T _{ST}	-40 to +150	°C	
Operating Temperature Range		T _{OP}	-40 to +85	°C	
Junction Temperature		TJ	-40 to +125	С°	
ESD HBM		HBM	±2	KV	
ESD MM		MM	±200	V	
	SOT-23-5L		180		
Thermal Resistance from Junction to case	TDFN-6L	θις	25	°C/W	
	MSOP-8L		45		
Thermal Desistance from lunction to	SOT-23-5L		250		
Thermal Resistance from Junction to ambient	TDFN-6L	θ_{JA}	120	°C/W	
	MSOP-8 L		200		

Note: θ_{JA} is measured with the PCB copper area of approximately 1 in² (Multi-layer). That need connect to GND (EP) pin.

*** ELECTRICAL CHARACTERISTICS**

(V_{IN}=V_{OUT}+1V or V_{IN}=2.8V whichever is greater, $C_{IN}=C_{OUT}=1$ uF, $T_A=25$ °C, unless otherwise noted)


Characteristics	Symbol	Conditions			Тур	Max	Units
Input Voltage	VIN	(Note1)		2.8	-	5.5	V
Output Voltage Accuracy	ΔV _{OUT}	I _{OUT} =1mA		-2	-	+2	%
Quiescent Current	lq	I _{OUT} =0mA		-	30	60	μA
			$1.0V\!\leq\!V_{\text{OUT}}\!\leq\!2.0V$	-	1500	-	
Dropout Voltage		L	$1.5V \! < \! V_{OUT} \! \le \! 2.0V$	-	1000	-	m\/
(Note2)	VDROP	I _{OUT} =300mA	$2.0V \! < \! V_{OUT} \! \le \! 2.8V$	-	350	-	mV
			$2.8V \! < \! V_{OUT} \! \le \! 3.3V$	-	250	-	
Current Limit	ILIMIT	R _{LOAD} =1Ω		300	-	-	mA
Line Regulation	ΔV_{LINE}	I _{OUT} =1mA, V _{IN} =V _{OUT} +1V to 5V			1	5	mV
Load Regulation (Note3)	ΔV_{LOAD}	I _{OUT} =0m~15	50mA	-	6	20	mV
Dinnla Dejection	PSRR	C _{OUT} =1uF,	F=1KHz	-	-73	-	dB
Ripple Rejection		I _{OUT} =1mA	F=10K	-	-60	-	uБ
Enchle Input Threshold	V_{ENH}			1.4	-	-	V
Enable Input Threshold	V_{ENL}			-	-	0.4	v
Enable Pin Current	I _{EH}	V _{EN} =V _{IN}		-	-	0.1	μA
Shutdown Current	I _{SD}	V _{IN} =3.6V, V _{EN} =0V		-	-	1	μA
Temperature Coefficient	Tc	I _{OUT} =1mA, V _{IN} =5V		-	50	-	ppm/°C
Temperature Shutdown	Ts			-	160	-	٥C
Temperature Shutdown Hysterisis	Т _{SH}			-	25	-	°C

Note1. Minimum V_{IN} voltage is defined by output adds a dropout voltage.

Note2. The dropout voltage is defined as V_{IN} - V_{OUT} , which is measured when V_{OUT} drop about 100mV.

Note3. Regulation is measured at constant junction temperature by using pulsed testing with a low ON time.

*** APPLICATION CIRCUIT**

***** FUNCTION DESCRIPTIONS

A minimum of 1uF capacitor must be connected from V_{OUT} to ground to insure stability. Typically a large storage capacitor is connected from V_{IN} to ground to ensure that the input voltage does not sag below the minimum dropout voltage during the load transient response. This pin must always be dropout voltage higher than V_{OUT} in order for the device to regulate properly.

*** APPLICATION INFORMATION**

Like any low-dropout regulator, the AX6608 requires input and output decoupling capacitors. The device is specifically designed for portable applications requiring minimum board space and smallest components. These capacitors must be correctly selected for good performance. Please note that linear regulators with a low dropout voltage have high internal loop gains which require care in guarding against oscillation caused by insufficient decoupling capacitance.

Capacitor Selection

Normally, use a 1µF capacitor on the input and a 1µF capacitor on the output of the AX6608. Larger input capacitor values and lower ESR provide better supply-noise rejection and transient response. A large value output capacitor may be necessary if large, fast transients are anticipated and the device is located several inches from the power source. The capacitors is recommended to use 1uF X5R or X7R dielectric ceramic capacitors with $30m\Omega$ to $50m\Omega$ ESR range between device outputs to ground for transient stability.

Input-Output (Dropout) Voltage

A regulator's minimum input-to-output voltage differential (dropout voltage) determines the lowest usable supply voltage. In battery-powered systems, this determines the useful end-of-life battery voltage. Because the device uses a PMOS, its dropout voltage is a function of drain-to source on-resistance, R_{DS (ON)}, multiplied by the load current:

 $V_{DROPOUT} = V_{IN} - V_{OUT} = R_{DS (ON)} \times I_{OUT}$

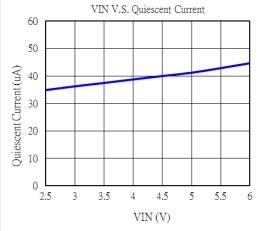
Current Limit and Thermal Shutdown Protection

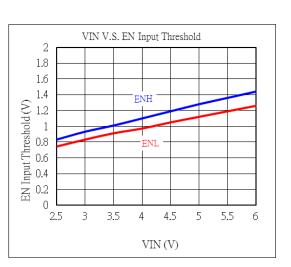
In order to prevent overloading or thermal condition from damaging the device, AX6608 regulator has internal thermal and current limiting functions designed to protect the device. It will rapidly shut off PMOS pass element during overloading or over temperature condition.

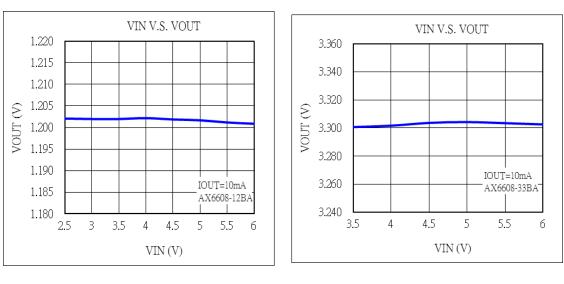
Thermal Considerations

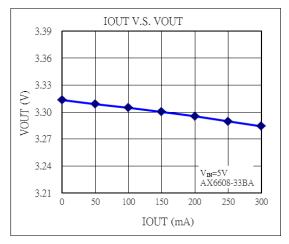
The AX6608 series can deliver a current of up to 300mA over the full operating junction temperature range. However, the maximum output current must be dated at higher ambient temperature to ensure the junction temperature does not exceed 125°C. With all possible conditions, the junction temperature must be within the range specified under operating conditions. Power dissipation can be calculated based on the output current and the voltage drop across regulator.

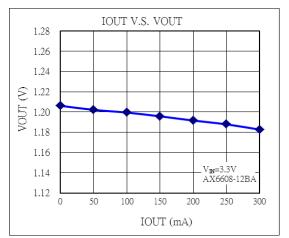
The final operating junction temperature for any set of conditions can be estimated by the following thermal equation:

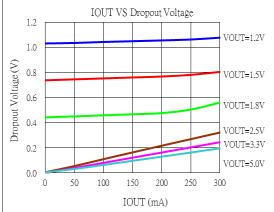

PD (MAX) =
$$(T_{J (MAX)} - T_A) / \theta_{JA}$$

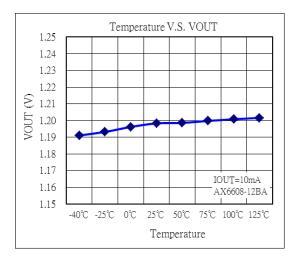

Where $T_{J (MAX)}$ is the maximum junction temperature of the die (125°C) and T_A is the maximum ambient temperature. The junction to ambient thermal resistance (θ_{JA}) for SOT-23-5L package at recommended minimum footprint is 250°C/W.

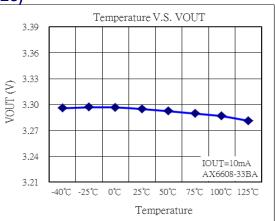

PCB Layout

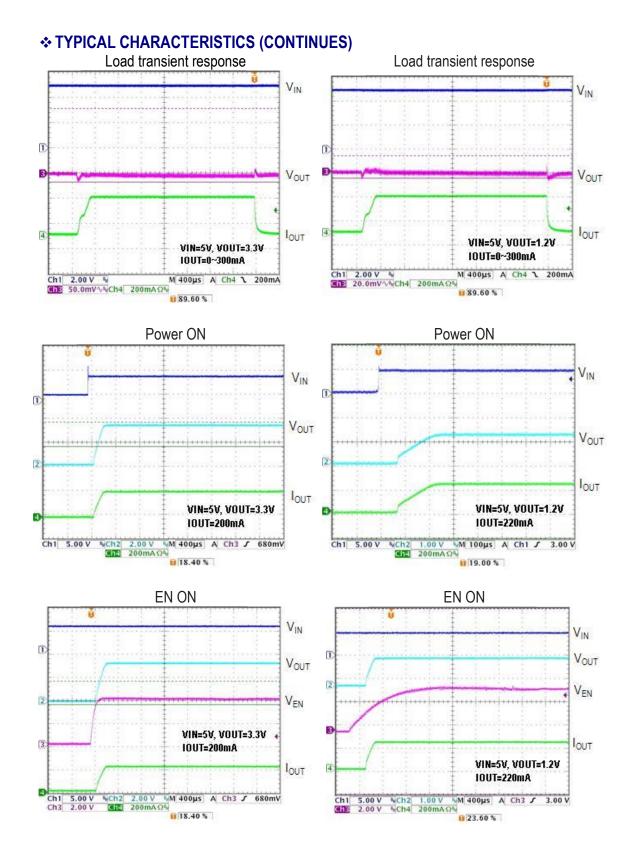

An input capacitance of \cong 1µF is required between the AX6608 input pin and ground (the amount of the capacitance may be increased without limit), this capacitor must be located a distance of not more than 1cm from the input and return to a clean analog ground. Input capacitor can filter out the input voltage spike caused by the surge current due to the inductive effect of the package pin and the printed circuit board's routing wire. Otherwise, the actual voltage at the VIN pin may exceed the absolute maximum rating. The output capacitor also must be located a distance of not more than 1cm from output to a clean analog ground. Because it can filter out the output spike caused by the surge current due to the inductive effect of the package pin and the printed circuit board's routing wire.



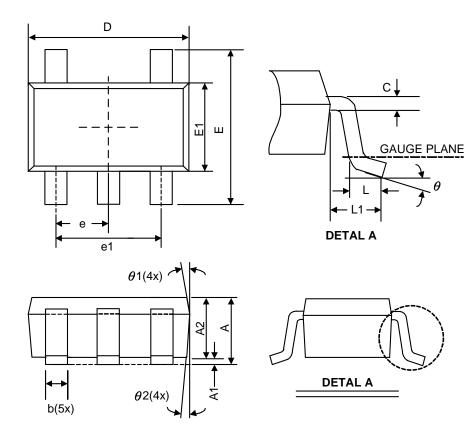







8/16

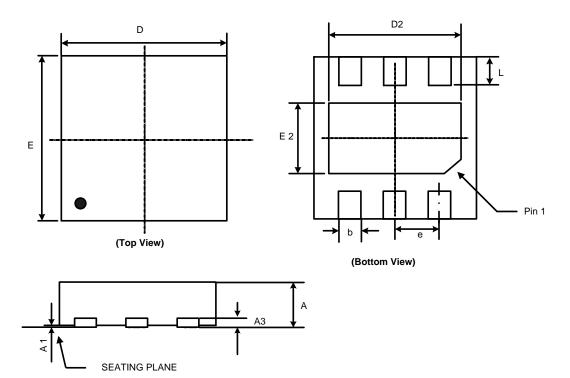
***** TYPICAL CHARACTERISTICS (CONTINUES)



10/16

*** PACKAGE OUTLINES**

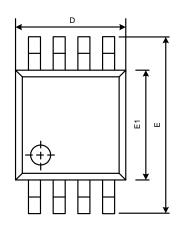
(1) SOT-23-5L

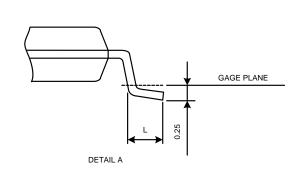


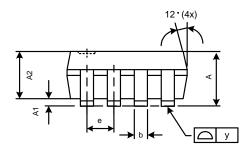
Symbol	Dimens	sions in Milli	imeters	Dimensions in Inches			
Symbol	Min.	Nom.	Max.	Min.	Nom.	Max.	
Α	-	-	1.45	-	-	0.057	
A1	0	0.08	0.15	0	0.003	0.006	
A2	0.9	1.1	1.3	0.035	0.043	0.051	
b	0.3	0.4	0.5	0.012	0.016	0.02	
С	0.08	0.15	0.22	0.003	0.006	0.009	
D	2.7	2.9	3.1	0.106	0.114	0.122	
E1	1.4	1.6	1.8	0.055	0.063	0.071	
E	2.6	2.8	3	0.102	0.11	0.118	
L	0.3	0.45	0.6	0.012	0.018	0.024	
L1	0.5	0.6	0.7	0.02	0.024	0.028	
e1		1.9 BSC			0.075 BSC		
е		0.95 BSC			0.037 BSC		
θ	0°	4°	8º	00	4 °	8º	
<i>θ</i> 1	5°	10°	15°	5°	10°	15°	
θ2	5°	10°	15°	5°	10°	15°	

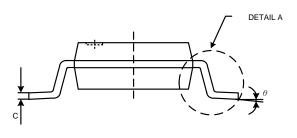
JEDEC outline: MO-178 AA

11/16

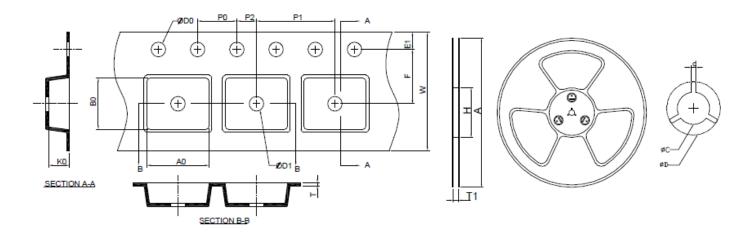

(2) TDFN-6L (2*2 0.75mm)

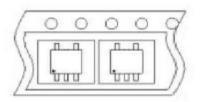



(SIDE	View)
	1011


Symbol	Dime	ensions in Millin	Dimensions in Inches			
	Min.	Nom.	Max.	Min.	Nom.	Max.
А	0.7	0.75	0.8	0.028	0.03	0.031
A1	0	0.02	0.05	0	0.001	0.002
A3		0.203 REF.			0.008 REF.	
b	0.2	0.28	0.35	0.009	0.011	0.013
D	1.95	2	2.05	0.077	0.079	0.081
D2	1.0	1.5	1.7	0.039	0.059	0.067
E	1.95	2	2.05	0.077	0.079	0.081
E2	0.5	0.9	1.1	0.02	0.035	0.043
е		0.65 BSC.		0.026 BSC.		
L	0.2	0.3	0.4	0.008	0.012	0.016

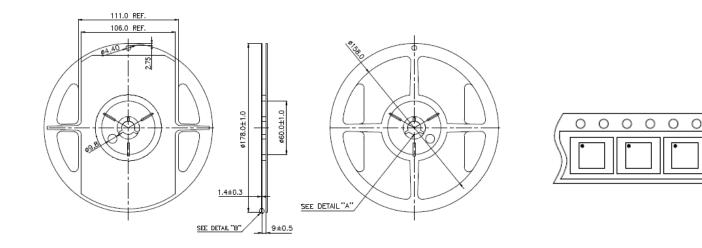
(3) MSOP-8L

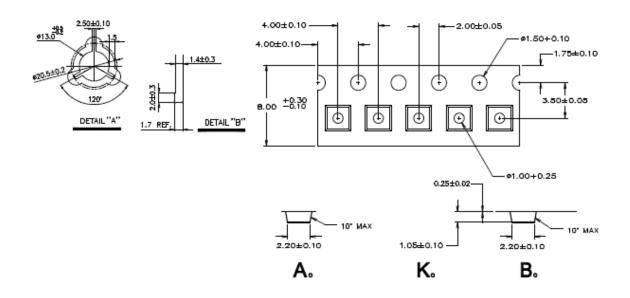



Symbol	Dime	nsions in Millir	neters	Dimensions in Inches			
Symbol	Min.	Nom.	Max.	Min.	Nom.	Max.	
А	-	-	1.1	-	-	0.043	
A1	0	0.08	0.15	0	0.003	0.006	
A2	0.75	0.85	0.95	0.03	0.033	0.037	
b	0.22	0.3	0.38	0.009	0.012	0.015	
С	0.08	0.15	0.23	0.003	0.006	0.009	
D	2.9	3	3.1	0.114	0.118	0.122	
E	4.8	4.9	5	0.189	0.193	0.197	
E1	2.9	3	3.1	0.114	0.118	0.122	
е	0.65 BSC 0						
L	0.4	0.6	0.8	0.016	0.024	0.031	
У	-	-	0.1	-	-	0.004	
θ	0°	4°	8°	0°	4°	8°	

JEDEC outline: MO-187 AA

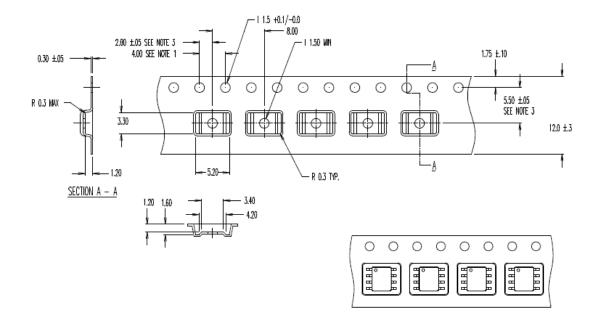
***** Carrier tape dimension

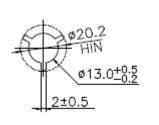


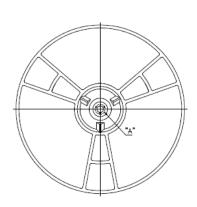


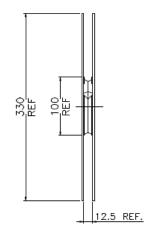
Α	Н	T1	С	d	D	W	E1	F
178.0±2.00	50 MIN.	8.4+2.00 -0.00	13.0+0.50 -0.20	1.5 MIN.	20.2 MIN.	8.0±0.30	1.75±0.10	3.5±0.05
P0	P1	P2	D0	D1	Т	A0	B0	K0
4.0±0.10	4.0±0.10	2.0±0.05	1.5+0.10 -0.00	1.0 MIN.	0.6+0.00 -0.40	3.20±0.20	3.10±0.20	1.50±0.20

(mm)


TDFN-6L (2x2mm)






AX6608 空瑟萊特科技股份有限公司 AXElite Technology Co.,Ltd

MSOP-8L

