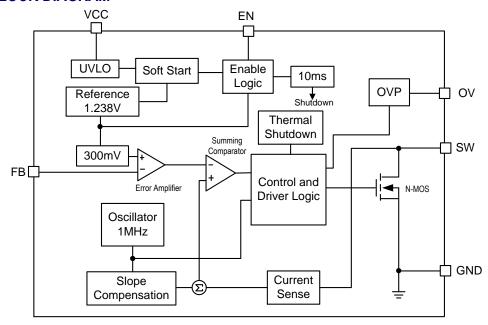


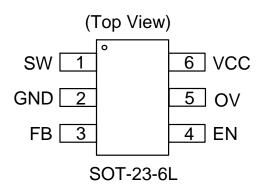
40V, 1.7A, Boost for 10 White LED Driver

❖ GENERAL DESCRIPTION

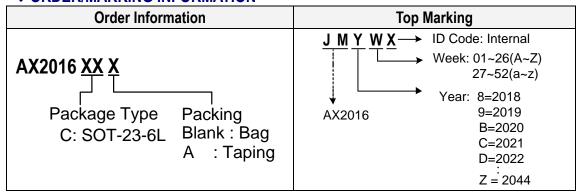

The AX2016 is a step-up converter designed for driving up to 10 series white LEDs for backlighting application. The AX2016 uses current mode, 1MHz fixed frequency architecture to regulate the LED current, which is set through an external current sense resistor. Its low 300mV/250mV/200mV feedback voltage reduces power loss and improves efficiency. The OV pin monitors the output voltage and turns off the converter if an over-voltage condition is present due to an open circuit condition. The AX2016 includes under-voltage lockout, current limiting and thermal shutdown protection preventing damage in the event of an output overload. The driver is available in small 6-pin SOT-23 package.

❖ FEATURES

- 2.5V to 5.5V operating input voltage range
- Drives up to 10 series White LEDs
- 1MHz Fixed Switching Frequency
- Wide range for PWM dimming (200Hz to 200KHz)
- Internal 1.7A switching current limit
- Over Voltage Protection (OVP)
- Internal Soft-start Function
- Current limit and Thermal shutdown protection
- Under voltage Lockout
- Available in the 6-pin SOT-23 Package
- RoHS and Halogen free compliance



*** BLOCK DIAGRAM**


PIN ASSIGNMENT

The package of AX2016 is SOT-23-6L; the pin assignment is given by:

Name	Description
SW	Switch Output Pin
GND	Ground Pin
FB	Feedback Pin; Put a Resistor to GND
ГВ	to Setting the Current
EN	Enable with Dimming Pin; Internal
LIN	Floating; Logic High Active
OV	OVP Sense Pin
VCC	Power Input Pin

❖ ORDER/MARKING INFORMATION

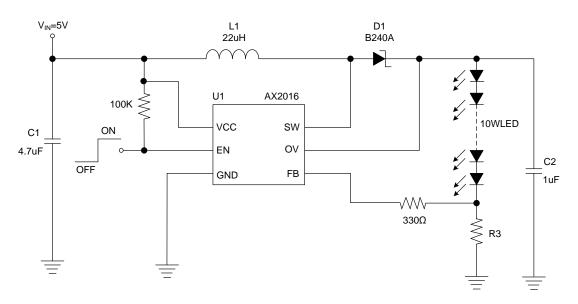
❖ ABSOLUTE MAXIMUM RATINGS (at T_A=25°C)

Characteristics	Symbol	Rating	Unit
V _{CC} Pin Voltage	V _{CC}	-0.3 to 6	V
SW Pin Voltage	V _{SW}	-0.3 to 45	V
OV Pin Voltage	Vov	-0.3 to 45	V
EN, FB Pin Voltage		-0.3 to 6	V
Power Dissipation	PD	(T _J -T _A) / θ _{JA}	W
Storage Temperature Range	T _{ST}	-65 to +150	°C
Operating Junction Temperature Range	T _{OP}	-40 to +125	°C
Thermal Resistance from Junction to case	θ _{JC}	130	°C/W
Thermal Resistance from Junction to ambient	θја	250	°C/W

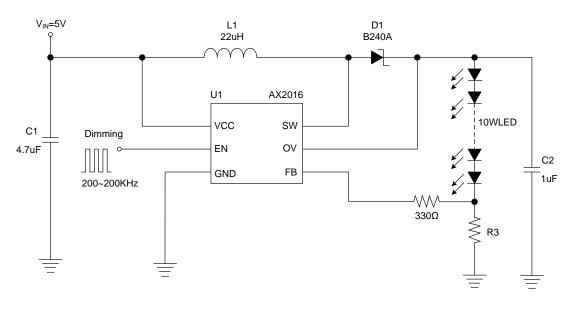
Note: θ_{JA} is measured with the PCB copper area of approximately 1 in² (Multi-layer).

*** ELECTRICAL CHARACTERUSTICS**

(V_{CC}=5V, I_{OUT} = 20mA, T_A = 25°C, unless otherwise noted)


Cha	racteristics	Symbol	Conditions	Min	Тур	Max	Units
Input Voltage I	Range	Vcc		2.5	-	5.5	V
Step-Up Voltag	ge Range	V _{OUT}		3	-	40	V
OV Sense Vol	tage	Vov			38		V
Under Voltage	Lockout	U_{VLO}	Rising	-	2.2	2.4	V
UVLO Hystere	esis			-	100	-	mV
Feedback Volt	age	V_{FB}		285	300	315	mV
	Logic-High Voltage	V _{IH}		2.0	-	-	V
EN Threshold	Logic-Low Voltage	V _{IL}		-	-	0.4	٧
EN Hysteresis				-	200	ı	mV
Operating Qui	escent Current	Iccq	I _{OUT} = 0mA, V _{FB} =0.5V	-	300	500	μΑ
Shutdown Cur	rent	I _{SD}	V _{EN} =0V, t _{EN} > 20ms	-	1	4	μΑ
N-Channel MOSFET Current Limit (Note1)		I _{LIM}	Duty=50%		1.7	-	Α
MOSFET On-F	Resistance (Note1)	R _{DS(on)}		-	0.6	1.0	Ω
Maximum Duty	y Cycle	D_{MAX}		-	88	ı	%
Line Regulation			V_{CC} = 3V to 5V	-	1	ı	%
Switching Frequency		Fosc		0.75	1	1.25	MHz
Dimming Clock	k Rate	F _{DIM}		0.2	-	200	KHz
FB Input Leakage Current		I _{FB-LKG}	V _{FB} = 0.5V	-	0.01	100	nA
SW Leakage Current		I _{SWL}	V _{LX} = 30V, V _{FB} =0.5V	-	-	1	μΑ
EN Input Leakage Current		I _{EN-LKG1}	V _{EN} = V _{CC}	-	1.5	3	μΑ
		I _{EN-LKG2}	V _{EN} = GND	-	-	1	μA
Shutdown Delay		T _{SHDN}		-	10	-	mS
Thermal Shuto	lown	T _{SD}		-	160	-	°C
Thermal Shuto	lown Hysteresis	T _{SH}		-	30	-	10

Note1: Guaranteed by design.


*** APPLICATION CIRCUIT**

(1) 10 series LED application

 $I_{\text{LED}}\text{=}V_{\text{FB}}\text{/R3},\ V_{\text{FB}}\text{=}300\text{mV}\ (AX2016)$ V_{FB}=200mV (AX2016A)

LED Dimming application

 $I_{LED} = V_{FB}/R3, \ V_{FB} = 300 mV \ (AX2016)$ V_{FB}=200mV (AX2016A)

APPLICATION INFORMATION

Setting the ILED Current

Application circuit item shows the basic application circuit with AX2016 adjustable output version. The external resistor sets the LED output current according to the following equation:

 $I_{LED} = (V_{FB}/R3)$

Part No.	I _{LED}	R3			
AX2016	20mA	15Ω	6mW		
	350mA	0.857Ω	105mW		

Over Voltage Protection

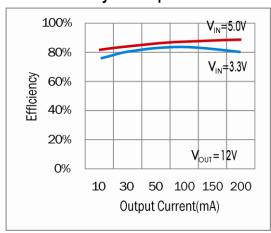
The Over Voltage Protection is detected by a junction breakdown detecting circuit. Once V_{OUT} goes over the detecting voltage, SW pin stops switching and the power N-MOSFET will be turned off. Then, the V_{OUT} will be clamped to be near V_{OVP}.

Under Voltage Lockout (UVLO)

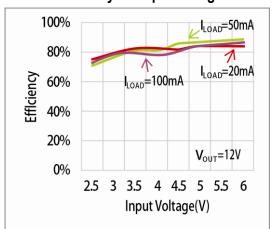
To avoid mis-operation of the device at low input voltages an under voltage lockout is included that disables the device, if the input voltage falls below (2.25V-100mV).

Input Capacitor Selection

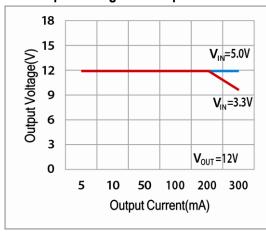
The input capacitor reduces the surge current drawn from the input and switching noise from the device. The input capacitor impedance at the switching frequency shall be less than input source impedance to prevent high frequency switching current passing to the input. A low ESR input capacitor sized for maximum RMS current must be used. Ceramic capacitors with X5R or X7R dielectrics are highly recommended because of their low ESR and small temperature coefficients. A 4.7µF ceramic capacitor for most applications is sufficient. For a lower output power requirement application, this value can be decreased.

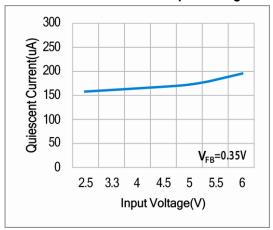

Output Capacitor Selection

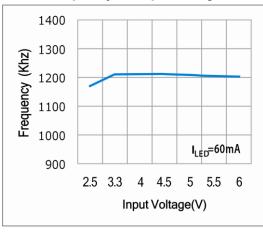
The output capacitor is required to keep the output voltage ripple small and to ensure regulation loop stability. The output capacitor must have low impedance at the switching frequency. Ceramic capacitors with X5R or X7R dielectrics are recommended due to their low ESR and high ripple current. A 1uF ceramic capacitors works for most of the applications. Higher capacitor values can be used to improve the load transient response.

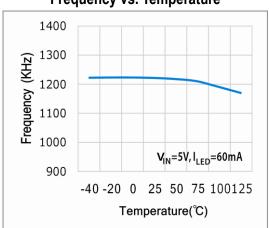


TYPICAL CHARACTERISTICS

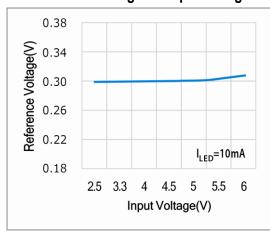

Efficiency vs. Output Current

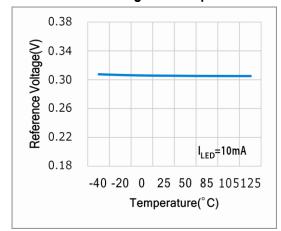

Efficiency vs. Input Voltage


Output Voltage vs. Output Current

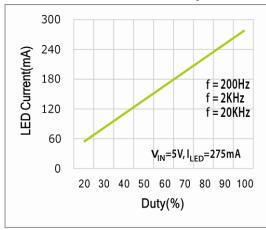

Quiescent Current vs. Input Voltage

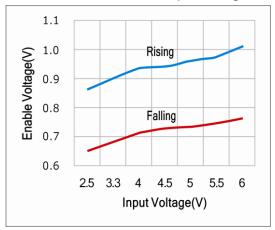
Frequency vs. Input Voltage


Frequency vs. Temperature

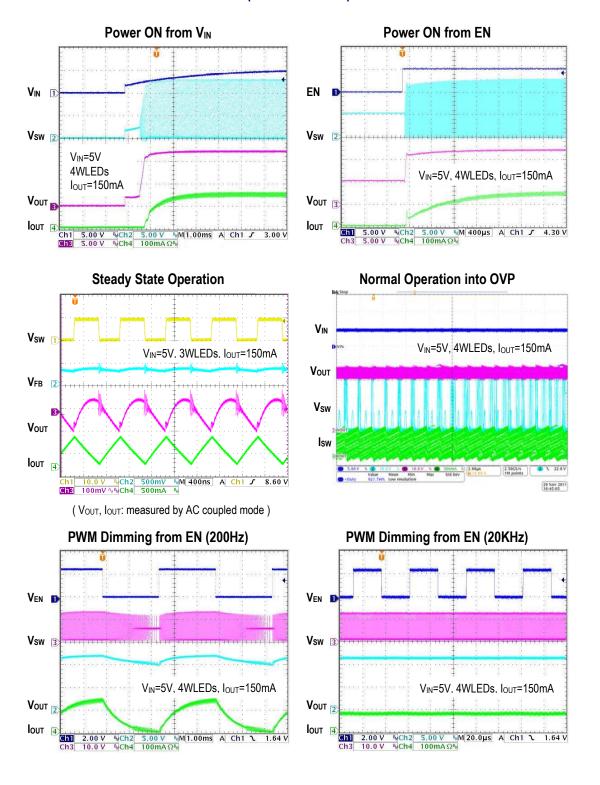


TYPICAL CHARACTERISTICS (CONTINUOUS)

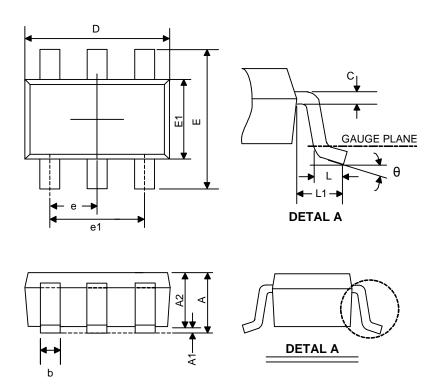

Reference Voltage vs. Input Voltage


Reference Voltage vs. Temperature

LED Current vs. Duty

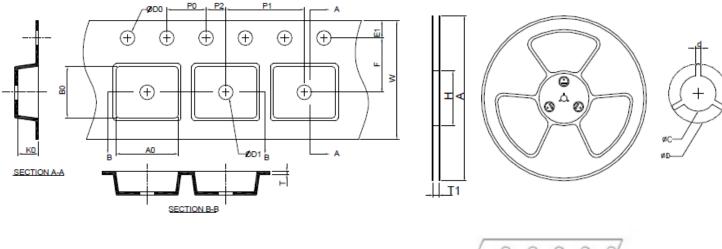


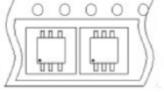
Enable Threshold vs. Input Voltage


❖ TYPICAL CHARACTERISTICS (CONTINUOUS)

*** PACKAGE OUTLINES**

(1) SOT-23-6L


Symbol	Dimensions in Millimeters			Dimensions in Inches			
	Min.	Nom.	Max.	Min.	Nom.	Max.	
Α	-	-	1.45	-	-	0.057	
A1	0	-	0.15	0	0.003	0.006	
A2	0.9	1.1	1.3	0.035	0.043	0.051	
b	0.3	0.4	0.5	0.012	0.016	0.02	
С	0.08	-	0.22	0.003	0.006	0.009	
D	2.7	2.9	3.1	0.106	0.114	0.122	
E1	1.4	1.6	1.8	0.055	0.063	0.071	
Е	2.6	2.8	3	0.102	0.11	0.118	
L	0.3	0.45	0.6	0.012	0.018	0.024	
L1	0.5	0.6	0.7	0.02	0.024	0.028	
e1	1.9 BSC			0.075 BSC			
е	0.95 BSC			0.037 BSC			
θ	0°	4°	8°	0°	4º	8°	


JEDEC outline: MO-178 AB

❖ Carrier tape dimension

SOT-23-6L

Α	Н	T1	С	d	D	W	E1	F
178.0±2.00	50 MIN.	8.4+2.00 -0.00	13.0+0.50 -0.20	1.5 MIN.	20.2 MIN.	8.0±0.30	1.75±0.10	3.5±0.05
P0	P1	P2	D0	D1	T	A0	B0	K0
4.0±0.10	4.0±0.10	2.0±0.05	1.5+0.10 -0.00	1.0 MIN.	0.6+0.00 -0.40	3.20±0.20	3.10±0.20	1.50±0.20

(mm)